55 research outputs found

    Cardiovasc Diabetol

    Get PDF
    BACKGROUND: Advanced glycation end-products play a role in diabetic vascular complications. Their optical properties allow to estimate their accumulation in tissues by measuring the skin autofluorescence (SAF). We searched for an association between SAF and major adverse cardiovascular events (MACE) incidence in subjects with Type 1 Diabetes (T1D) during a 7 year follow-up. METHODS: During year 2009, 232 subjects with T1D were included. SAF measurement, clinical [age, sex, body mass index (BMI), comorbidities] and biological data (HbA1C, blood lipids, renal parameters) were recorded. MACE (myocardial infarction, stroke, lower extremity amputation or a revascularization procedure) were registered at visits in the center or by phone call to general practitioners until 2016. RESULTS: The participants were mainly men (59.5%), 51.5 +/- 16.7 years old, with BMI 25.0 +/- 4.1 kg/m(2), diabetes duration 21.5 +/- 13.6 years, HbA1C 7.6 +/- 1.1%. LDL cholesterol was 1.04 +/- 0.29 g/L, estimated Glomerular Filtration Rates (CKD-EPI): 86.3 +/- 26.6 ml/min/1.73 m(2). Among these subjects, 25.1% were smokers, 45.3% had arterial hypertension, 15.9% had elevated AER (>/= 30 mg/24 h), and 9.9% subjects had a history of previous MACE. From 2009 to 2016, 22 patients had at least one new MACE: 6 myocardial infarctions, 1 lower limb amputation, 15 revascularization procedures. Their SAF was 2.63 +/- 0.73 arbitrary units (AU) vs 2.08 +/- 0.54 for other patients (p = 0.002). Using Cox-model, after adjustment for age (as the scale time), sex, diabetes duration, BMI, hypertension, smoking status, albumin excretion rates, statin treatment and a previous history of MACE, higher baseline levels of SAF were significantly associated with an increased risk of MACE during follow-up (HR = 4.13 [1.30-13.07]; p = 0.02 for 1 AU of SAF) and Kaplan-Meier curve follow-up showed significantly more frequent MACE in group with SAF upper the median (p = 0.001). CONCLUSION: A high SAF predicts MACE in patients with T1D

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    Skin fluorescence as a clinical tool for non-invasive assessment of advanced glycation and long-term complications of diabetes

    Get PDF
    Glycation is important in the development of complications of diabetes mellitus and may have a central role in the well-described glycaemic memory effect in developing these complications. Skin fluorescence has emerged over the last decade as a non-invasive method for assessing accumulation of advanced glycation endproducts. Skin fluorescence is independently related to micro- and macrovascular complications in both type 1 and type 2 diabetes mellitus and is associated with mortality in type 2 diabetes. The relation between skin fluorescence and cardiovascular disease also extends to other conditions with increased tissue AGE levels, such as renal failure. Besides cardiovascular complications, skin fluorescence has been associated, more recently, with other prevalent conditions in diabetes, such as brain atrophy and depression. Furthermore, skin fluorescence is related to past long-term glycaemic control and clinical markers of cardiovascular disease. This review will discuss the technique of skin fluorescence, its validation as a marker of tissue AGE accumulation, and its use as a clinical tool for the prediction of long-term complications in diabetes mellitus

    Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes - Relevance of glycated collagen products versus HbA(1c) as markers of diabetic complications

    No full text
    The relationships between long-term intensive control of glycemia and indicators of skin collagen glycation (furosine), glycoxidation (pentosidine and N-epsilon-[carboxymethyl]-lysine [CML]), and crosslinking (acid and pepsin solubility) were examined in 216 patients with type 1 diabetes from the primary prevention and secondary intervention cohorts of the Diabetes Control and Complications Trial. By comparison with conventional treatment, 5 years of intensive treatment was associated with 30-32% lower furosine, 9%, lower pentosidine, 9-13% lower CML, 24% higher acid-soluble collagen, and 50% higher pepsin-soluble collagen. All of these differences were statistically significant in the subjects of the primary prevention cohort (P <0.006-0.001) and also of the secondary intervention cohort (P <0.015-0.001) with the exception of CML and acid-soluble collagen. Age- and duration-adjusted collagen variables were significantly associated with the HbA(1c) value nearest the biopsy and with cumulative prior HbA(1c) values. Multiple logistic regression analyses with six nonredundant collagen parameters as independent variables and various expressions of retinopathy, nephropathy, and neuropathy outcomes as dependent variables showed that the complications were significantly associated with the full set of collagen variables. Surprisingly, the percentage of total variance (R-2) in complications explained by the collagen variables ranged from 19 to 36% with the intensive treatment and from 14 to 51% with conventional treatment. These associations generally remained significant even after adjustment for HbA(1c), and, most unexpectedly, in conventionally treated subjects, glycated collagen was the parameter most consistently associated with diabetic complications. Continued monitoring of these subjects may determine whether glycation products in the skin, and especially the early Amadori product (furosine), have the potential to be predictors of the future risk of developing complications, and perhaps be even better predictors than glycated hemoglobin (HbA(1c))
    • …
    corecore