380 research outputs found

    Ising antiferromagnet with mobile, pinned and quenched defects

    Get PDF
    Motivated by recent experiments on (Sr,Ca,La)_14 Cu_24 O_41, a two-dimensional Ising antiferromagnet with mobile, locally pinned and quenched defects is introduced and analysed using mainly Monte Carlo techniques. The interplay between the arrangement of the defects and the magnetic ordering as well as the effect of an external field are studied.Comment: 10 pages, 6 figures. Condensed Matter Physics (Festschrift in honour of R. Folk

    Quenched charge disorder in CuO2 spin chains: Experimental and numerical studies

    Full text link
    We report on measurements of the magnetic response of the anisotropic CuO_2 spin chains in lightly hole-doped La_x (Ca,Sr)_14-x Cu_24 O_41, x>=5. The experimental data suggest that in magnetic fields B >~ 4T (applied along the easy axis) the system is characterized by short-range spin order and quasi-static (quenched) charge disorder. The magnetic susceptibility chi(B) shows a broad anomaly, which we interpret as the remnant of a spin-flop transition. To corroborate this idea, we present Monte Carlo simulations of a classical, anisotropic Heisenberg model with randomly distributed, static holes. Our numerical results clearly show that the spin-flop transition of the pure model (without holes) is destroyed and smeared out due to the disorder introduced by the quasi-static holes. Both the numerically calculated susceptibility curves chi(B) and the temperature dependence of the position of the anomaly are in qualitative agreement with the experimental data.Comment: 10 pages, REVTeX4. 11 figures; v2: Fig.2 replaced, small changes in Figs.1 and 11; minor revisons in Sec. III.C; accepted by Phys. Rev.

    Comment on "Frustrating interactions and broadened magnetic interactions in the edge-sharing CuO_2 chains in La_5 Ca_9 Cu_24 O_41"

    Full text link
    Using Monte Carlo techniques, we show that the two--dimensional anisotropic Heisenberg model reproducing nicely inelastic neutron scattering measurements on La_5 Ca_9 Cu_24 O_41 (Matsuda et al. [Phys. Rev. B 68, 060406(R) (2003)]) seems to be insufficient to describe correctly measurements on thermodynamic quantities like the magnetization or the susceptibility. Possible reasons for the discrepancy are suggested.Comment: 3 pages, 2 EPS figures; part (ii) rewritten, some typos corrected; final version that has been accepted for publication in Phys. Rev.

    Two-dimensional anisotropic Heisenberg antiferromagnet in a field

    Full text link
    The classical, square lattice, uniaxially anisotropic Heisenberg antiferromagnet in a magnetic field parallel to the easy axis is studied using Monte Carlo techniques. The model displays a long-range ordered antiferromagnetic, an algebraically ordered spin-flop, and a paramagnetic phase. The simulations indicate that a narrow disordered phase intervenes between the ordered phases down to quite low temperatures. Results are compared to previous, partially conflicting findings on related classical models as well as the quantum variant with spin S=1/2.Comment: 8 pages, 9 figure

    Phase diagrams of a classical two-dimensional Heisenberg antiferromagnet with single-ion anisotropy

    Full text link
    A classical variant of the two-dimensional anisotropic Heisenberg model reproducing inelastic neutron scattering experiments on La_5 Ca_9 Cu_24 O_41 [M. Matsuda et al., Phys.Rev. B 68, 060406(R) (2003)] is analysed using mostly Monte Carlo techniques. Phase diagrams with external fields parallel and perpendicular to the easy axis of the anisotropic interactions are determined, including antiferromagnetic and spin-flop phases. Mobile spinless defects, or holes, are found to form stripes which bunch, debunch and break up at a phase transition. A parallel field can lead to a spin-flop phase.Comment: 9 pages, 9 figures; final version as accepted by Phys. Rev. B (Fig. 5 replaced, added remarks in Secs. I, III, and V

    Interfacial adsorption phenomena of the three-dimensional three-state Potts model

    Full text link
    We study the interfacial adsorption phenomena of the three-state ferromagnetic Potts model on the simple cubic lattice by the Monte Carlo method. Finite-size scaling analyses of the net-adsorption yield the evidence of the phase transition being of first-order and kBTC/J=1.8166(2)k_{\rm B} T_{\rm C} / J = 1.8166 (2).Comment: 14 page

    Ising model with periodic pinning of mobile defects

    Full text link
    A two-dimensional Ising model with short-range interactions and mobile defects describing the formation and thermal destruction of defect stripes is studied. In particular, the effect of a local pinning of the defects at the sites of straight equidistant lines is analysed using Monte Carlo simulations and the transfer matrix method. The pinning leads to a long-range ordered magnetic phase at low temperatures. The dependence of the phase transition temperature, at which the defect stripes are destabilized, on the pinning strength is determined. The transition seems to be of first order, with and without pinning.Comment: 7 pages, 7 figure

    Quantum Monte Carlo scheme for frustrated Heisenberg antiferromagnets

    Full text link
    When one tries to simulate quantum spin systems by the Monte Carlo method, often the 'minus-sign problem' is encountered. In such a case, an application of probabilistic methods is not possible. In this paper the method has been proposed how to avoid the minus sign problem for certain class of frustrated Heisenberg models. The systems where this method is applicable are, for instance, the pyrochlore lattice and the J1J2J_1-J_2 Heisenberg model. The method works in singlet sector. It relies on expression of wave functions in dimer (pseudo)basis and writing down the Hamiltonian as a sum over plaquettes. In such a formulation, matrix elements of the exponent of Hamiltonian are positive.Comment: 19 LaTeX pages, 6 figures, 1 tabl

    Boundary critical behaviour of two-dimensional random Ising models

    Full text link
    Using Monte Carlo techniques and a star-triangle transformation, Ising models with random, 'strong' and 'weak', nearest-neighbour ferromagnetic couplings on a square lattice with a (1,1) surface are studied near the phase transition. Both surface and bulk critical properties are investigated. In particular, the critical exponents of the surface magnetization, 'beta_1', of the correlation length, 'nu', and of the critical surface correlations, 'eta_{\parallel}', are analysed.Comment: 16 pages in ioplppt style, 7 ps figures, submitted to J. Phys.

    Surface critical behavior of two-dimensional dilute Ising models

    Full text link
    Ising models with nearest-neighbor ferromagnetic random couplings on a square lattice with a (1,1) surface are studied, using Monte Carlo techniques and star-tiangle transformation method. In particular, the critical exponent of the surface magnetization is found to be close to that of the perfect model, beta_s=1/2. The crossover from surface to bulk critical properties is discussed.Comment: 6 pages in RevTex, 3 ps figures, to appear in Journal of Stat. Phy
    corecore