282 research outputs found

    Agegraphic Chaplygin gas model of dark energy

    Full text link
    We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.Comment: 8 page

    CMB B-polarization to map the Large-scale Structures of the Universe

    Get PDF
    We explore the possibility of using the B-type polarization of the CMB to map the large-scale structures of the Universe taking advantage of the lens effects on the CMB polarization. The functional relation between the B component with the primordial CMB polarization and the line-of-sight mass distribution is explicited. Noting that a sizeable fraction (at least 40%) of the dark halo population which is responsible of this effect can also be detected in galaxy weak lensing survey, we present statistical quantities that should exhibit a strong sensitivity to this overlapping. We stress that it would be a sound test of the gravitational instability picture, independent on many systematic effects that may hamper lensing detection in CMB or galaxy survey alone. Moreover we estimate the intrinsic cosmic variance of the amplitude of this effect to be less than 8% for a 100, deg^2 survey with a 10' CMB beam. Its measurement would then provide us with an original mean for constraining the cosmological parameters, more particularly, as it turns out, the cosmological constant Lambda.Comment: Latex2e with REVTEX ; 14 pages, 8 figure

    Cosmological implications of the KATRIN experiment

    Full text link
    The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put unprecedented constraints on the absolute mass of the electron neutrino, \mnue. In this paper we investigate how this information on \mnue will affect our constraints on cosmological parameters. We consider two scenarios; one where \mnue=0 (i.e., no detection by KATRIN), and one where \mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect estimates of some important cosmological parameters significantly. For example, the significance of ns<1n_s<1 and the inferred value of ΩΛ\Omega_\Lambda depend on the results from the KATRIN experiment.Comment: 13 page

    Measuring the cosmological lepton asymmetry through the CMB anisotropy

    Get PDF
    A large lepton asymmetry in the Universe is still a viable possibility and leads to many interesting phenomena such as gauge symmetry nonrestoration at high temperature. We show that a large lepton asymmetry changes the predicted cosmic microwave background (CMB) anisotropy and that any degeneracy in the relic neutrino sea will be measured to a precision of 1% or better when the CMB anisotropy is measured at the accuracy expected to result from the planned satellite missions MAP and Planck. In fact, the current measurements already put an upper limit on the lepton asymmetry of the Universe which is stronger than the one coming from considerations of primordial nucleosynthesis and structure formation.Comment: 4 pagex LaTex, 1 color postscript figure, uses epsf. Version submitted to PRL. (Bug in code fixed, new figure, conclusions unchanged

    Dark Energy, scalar-curvature couplings and a critical acceleration scale

    Full text link
    We study the effects of coupling a cosmologically rolling scalar field to higher order curvature terms. We show that when the strong coupling scale of the theory is on the 10^{-3}-10^{-1}eV range, the model passes all experimental bounds on the existence of fifth forces even if the field has a mass of the order of the Hubble scale in vacuum and non-suppressed couplings to SM fields. The reason is that the coupling to certain curvature invariant acts as an effective mass that grows in regions of large curvature. This prevents the field from rolling down its potential near sources and makes its effects on fifth-force search experiments performed in the laboratory to be observable only at the sub-mm scale. We obtain the static spherically symmetric solutions of the theory and show that a long-range force appears but it is turned on only below a fixed Newtonian acceleration scale of the order of the Hubble constant. We comment on the possibility of using this feature of the model to alleviate the CDM small scale crisis and on its possible relation to MOND.Comment: 12 pages, 2 figure

    The Tensor to Scalar Ratio of Phantom Dark Energy Models

    Get PDF
    We investigate the anisotropies in the cosmic microwave background in a class of models which possess a positive cosmic energy density but negative pressure, with a constant equation of state w = p/rho < -1. We calculate the temperature and polarization anisotropy spectra for both scalar and tensor perturbations by modifying the publicly available code CMBfast. For a constant initial curvature perturbation or tensor normalization, we have calculated the final anisotropy spectra as a function of the dark energy density and equation of state w and of the scalar and tensor spectral indices. This allows us to calculate the dependence of the tensor-to-scalar ratio on w in a model with phantom dark energy, which may be important for interpreting any future detection of long-wavelength gravitational waves.Comment: 5 pages, 4 figure

    Thermal Unparticles: A New Form of Energy Density in the Universe

    Full text link
    Unparticle \U with scaling dimension d_\U has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter \omega_\U, the ratio of pressure to energy density, is given by 1/(2d_\U +1) providing a new form of energy in our universe. In an expanding universe, the unparticle energy density \rho_\U(T) evolves dramatically differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a high decoupling temperature TDT_D is very small, it is possible to have a large relic density \rho_\U(T^0_\gamma) at present photon temperature Tγ0T^0_\gamma, large enough to play the role of dark matter. We calculate TDT_D and \rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version

    Fermionic Casimir effect in toroidally compactified de Sitter spacetime

    Full text link
    We investigate the fermionic condensate and the vacuum expectation values of the energy-momentum tensor for a massive spinor field in de Sitter spacetime with spatial topology Rp×(S1)q\mathrm{R}^{p}\times (\mathrm{S}^{1})^{q}. Both cases of periodicity and antiperiodicity conditions along the compactified dimensions are considered. By using the Abel-Plana formula, the topological parts are explicitly extracted from the vacuum expectation values. In this way the renormalization is reduced to the renormalization procedure in uncompactified de Sitter spacetime. It is shown that in the uncompactified subspace the equation of state for the topological part of the energy-momentum tensor is of the cosmological constant type. Asymptotic behavior of the topological parts in the expectation values is investigated in the early and late stages of the cosmological expansion. In the limit when the comoving length of a compactified dimension is much smaller than the de Sitter curvature radius the topological part in the expectation value of the energy-momentum tensor coincides with the corresponding quantity for a massless field and is conformally related to the corresponding flat spacetime result. In this limit the topological part dominates the uncompactified de Sitter part. In the opposite limit, for a massive field the asymptotic behavior of the topological parts is damping oscillatory for both fermionic condensate and the energy-momentum tensor.Comment: 19 pages, 5 figure

    Fast and precise map-making for massively multi-detector CMB experiments

    Full text link
    Future cosmic microwave background (CMB) polarisation experiments aim to measure an unprecedentedly small signal - the primordial gravity wave component of the polarisation field B-mode. To achieve this, they will analyse huge datasets, involving years worth of time-ordered data (TOD) from massively multi-detector focal planes. This creates the need for fast and precise methods to complement the M-L approach in analysis pipelines. In this paper, we investigate fast map-making methods as applied to long duration, massively multi-detector, ground-based experiments, in the context of the search for B-modes. We focus on two alternative map-making approaches: destriping and TOD filtering, comparing their performance on simulated multi-detector polarisation data. We have written an optimised, parallel destriping code, the DEStriping CARTographer DESCART, that is generalised for massive focal planes, including the potential effect of cross-correlated TOD 1/f noise. We also determine the scaling of computing time for destriping as applied to a simulated full-season data-set for a realistic experiment. We find that destriping can out-perform filtering in estimating both the large-scale E and B-mode angular power spectra. In particular, filtering can produce significant spurious B-mode power via EB mixing. Whilst this can be removed, it contributes to the variance of B-mode bandpower estimates at scales near the primordial B-mode peak. For the experimental configuration we simulate, this has an effect on the possible detection significance for primordial B-modes. Destriping is a viable alternative fast method to the full M-L approach that does not cause the problems associated with filtering, and is flexible enough to fit into both M-L and Monte-Carlo pseudo-Cl pipelines.Comment: 16 pages, 14 figures. MNRAS accepted. Typos corrected and computing time/memory requirement orders-of-magnitude numbers in section 4 replaced by precise number

    Boundary Effective Field Theory and Trans-Planckian Perturbations: Astrophysical Implications

    Full text link
    We contrast two approaches to calculating trans-Planckian corrections to the inflationary perturbation spectrum: the New Physics Hypersurface [NPH] model, in which modes are normalized when their physical wavelength first exceeds a critical value, and the Boundary Effective Field Theory [BEFT] approach, where the initial conditions for all modes are set at the same time, and modified by higher dimensional operators enumerated via an effective field theory calculation. We show that these two approaches -- as currently implemented -- lead to radically different expectations for the trans-Planckian corrections to the CMB and emphasize that in the BEFT formalism we expect the perturbation spectrum to be dominated by quantum gravity corrections for all scales shorter than some critical value. Conversely, in the NPH case the quantum effects only dominate the longest modes that are typically much larger than the present horizon size. Furthermore, the onset of the breakdown in the standard inflationary perturbation calculation predicted by the BEFT formalism is likely to be associated with a feature in the perturbation spectrum, and we discuss the observational signatures of this feature in both CMB and large scale structure observations. Finally, we discuss possible modifications to both calculational frameworks that would resolve the contradictions identified here.Comment: Reworded commentary, reference added (v2) References added (v3
    corecore