942 research outputs found

    Monte Carlo Simulation of Smectic Liquid Crystals and the Electroclinic Effect: the Role of the Molecular Shape

    Full text link
    Using Monte Carlo simulation methods, we explore the role of molecular shape in the phase behavior of liquid crystals and the electroclinic effect. We study a "bent-rod" mesogen shaped like the letter Z, composed of seven soft spheres bonded rigidly together with no intra-molecular degrees of freedom. For strongly angled molecules, we find that steric repulsion alone provides the driving force for a smectic-C phase, even without intermolecular dipole-dipole interactions. For weakly angled (nearly rod-like) molecules, we find a stable smectic-A (SmA) phase and a strong electroclinic effect with a saturation tilt angle of about 19 degrees. In the SmA phase we find evidence of vortex-like point defects. We also observe a field-induced nematic-smectic phase transition.Comment: 10 pages, including 10 postscript figures, uses REVTeX 3.0 and epsf.st

    Size effects and dislocation patterning in two-dimensional bending

    Full text link
    We perform atomistic Monte Carlo simulations of bending a Lennard-Jones single crystal in two dimensions. Dislocations nucleate only at the free surface as there are no sources in the interior of the sample. When dislocations reach sufficient density, they spontaneously coalesce to nucleate grain boundaries, and the resulting microstructure depends strongly on the initial crystal orientation of the sample. In initial yield, we find a reverse size effect, in which larger samples show a higher scaled bending moment than smaller samples for a given strain and strain rate. This effect is associated with source-limited plasticity and high strain rate relative to dislocation mobility, and the size effect in initial yield disappears when we scale the data to account for strain rate effects. Once dislocations coalesce to form grain boundaries, the size effect reverses and we find that smaller crystals support a higher scaled bending moment than larger crystals. This finding is in qualitative agreement with experimental results. Finally, we observe an instability at the compressed crystal surface that suggests a novel mechanism for the formation of a hillock structure. The hillock is formed when a high angle grain boundary, after absorbing additional dislocations, becomes unstable and folds to form a new crystal grain that protrudes from the free surface.Comment: 15 pages, 8 figure

    Cooperative Chiral Order in Copolymers of Chiral and Achiral Units

    Full text link
    Polyisocyanates can be synthesized with chiral and achiral pendant groups distributed randomly along the chains. The overall chiral order, measured by optical activity, is strongly cooperative and depends sensitively on the concentration of chiral pendant groups. To explain this cooperative chiral order theoretically, we map the random copolymer onto the one-dimensional random-field Ising model. We show that the optical activity as a function of composition is well-described by the predictions of this theory.Comment: 13 pages, including 3 postscript figures, uses REVTeX 3.0 and epsf.st

    A Graphical Language for Proof Strategies

    Full text link
    Complex automated proof strategies are often difficult to extract, visualise, modify, and debug. Traditional tactic languages, often based on stack-based goal propagation, make it easy to write proofs that obscure the flow of goals between tactics and are fragile to minor changes in input, proof structure or changes to tactics themselves. Here, we address this by introducing a graphical language called PSGraph for writing proof strategies. Strategies are constructed visually by "wiring together" collections of tactics and evaluated by propagating goal nodes through the diagram via graph rewriting. Tactic nodes can have many output wires, and use a filtering procedure based on goal-types (predicates describing the features of a goal) to decide where best to send newly-generated sub-goals. In addition to making the flow of goal information explicit, the graphical language can fulfil the role of many tacticals using visual idioms like branching, merging, and feedback loops. We argue that this language enables development of more robust proof strategies and provide several examples, along with a prototype implementation in Isabelle
    • …
    corecore