192 research outputs found

    Observation of medium-induced yield enhancement and acoplanarity broadening of low-pTp_\mathrm{T} jets from measurements in pp and central Pb−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) hadron trigger in proton−-proton and central Pb−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb−-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,jet<1407 < p_{\rm T,jet} < 140 GeV/c/c and trigger−-recoil jet azimuthal separation π/2<Δφ<π\pi/2 < \Delta\varphi < \pi. The measurements exhibit a marked medium-induced jet yield enhancement at low pTp_{\rm T} and at large azimuthal deviation from Δφ∌π\Delta\varphi\sim\pi. The enhancement is characterized by its dependence on Δφ\Delta\varphi, which has a slope that differs from zero by 4.7σ\sigma. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Charged-particle production as a function of the relative transverse activity classifier in pp, p−-Pb, and Pb−-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p−-Pb, and Pb−-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/⟹NchT⟩R_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and ⟹NchT⟩\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p−-Pb, and Pb−-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p−-Pb)

    Measurement of (anti)alpha production in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceIn this letter, measurements of (anti)alpha production in central (0−-10%) Pb−-Pb collisions at a center-of-mass energy per nucleon−-nucleon pair of sNN\sqrt{s_{\rm NN}} = 5.02 TeV are presented, including the first measurement of an antialpha transverse-momentum spectrum. Owing to its large mass, (anti)alpha production yields and transverse-momentum spectra are of particular interest because they provide a stringent test of particle production models. The averaged antialpha and alpha spectrum is included into a common blast-wave fit with lighter particles, indicating that the (anti)alpha also participates in the collective expansion of the medium created in the collision. A blast-wave fit including only protons, (anti)alpha, and other light nuclei results in a similar flow velocity as the fit that includes all particles. A similar flow velocity, but a significantly larger kinetic freeze-out temperature is obtained when only protons and light nuclei are included in the fit. The coalescence parameter B4B_4 is well described by calculations from a statistical hadronization model but significantly underestimated by calculations assuming nucleus formation via coalescence of nucleons. Similarly, the (anti)alpha-to-proton ratio is well described by the statistical hadronization model. On the other hand, coalescence calculations including approaches with different implementations of the (anti)alpha substructure tend to underestimate the data

    Studying the interaction between charm and light-flavor mesons

    No full text
    International audienceThe two-particle momentum correlation functions between charm mesons (D∗±\mathrm{D^{*\pm}} and D±\mathrm{D}^\pm) and charged light-flavor mesons (π±\pi^{\pm} and K±^{\pm}) in all charge-combinations are measured for the first time by the ALICE Collaboration in high-multiplicity proton-proton collisions at a center-of-mass energy of s=13\sqrt{s} =13 TeV. For DK\mathrm{DK} and D∗K\mathrm{D^*K} pairs, the experimental results are in agreement with theoretical predictions of the residual strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field theory. In the case of Dπ\mathrm{D}\pi and D∗π\mathrm{D^*}\pi pairs, tension between the calculations including strong interactions and the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interaction of the Dπ\mathrm{D}\pi and D∗π\mathrm{D^*}\pi systems are determined by fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted values are small and compatible with zero

    Prompt and non-prompt J/ψ/\psi production at midrapidity in Pb−-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV

    No full text
    International audienceThe transverse momentum (pTp_{\rm T}) and centrality dependence of the nuclear modification factor RAAR_{\rm AA} of prompt and non-prompt J/ψ/\psi, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb−-Pb collisions at sNN\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. The measurements are carried out through the e+e−{\rm e}^{+}{\rm e}^{-} decay channel at midrapidity (∣y∣|y| 5 GeV/cc, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping pTp_{\rm T} intervals, and cover the kinematic region down to pTp_{\rm T} = 1.5 GeV/cc at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ/\psi in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ/\psi production from recombination of c and c‟\overline{\rm c} quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/ψ/\psi. For non-prompt J/ψ/\psi, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark−-gluon plasma is consistent with measurements within uncertainties

    First measurement of the ∣t∣|t|-dependence of incoherent J/ψ\psi photonuclear production

    No full text
    International audienceThe first measurement of the cross section for incoherent photonuclear production of J/ψ\psi vector meson as a function of the Mandelstam ∣t∣|t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, ∣y∣<0.8|y|<0.8, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. This rapidity interval corresponds to a Bjorken-xx range (0.3(0.3−-1.4)×10−31.4)\times 10^{-3}. Cross sections are reported in five ∣t∣|t| intervals in the range 0.04<∣t∣<10.04<|t|<1~GeV2^2 and compared to the predictions of different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a ∣t∣|t|-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data

    Measurement of Non-prompt D0\rm D^0-meson Elliptic Flow in Pb-Pb Collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe elliptic flow (v2v_2) of D0\rm D^0 mesons from beauty-hadron decays (non-prompt D0\rm D^0) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair sNN\sqrt{s_{\rm NN}} = 5.02 TeV with the ALICE detector at the LHC. The D0\rm D^0 mesons were reconstructed at midrapidity (∣y∣<0.8|y|<0.8) from their hadronic decay D0→K−π+\mathrm{D^0 \to K^-\pi^+}, in the transverse momentum interval 2<pT<122 < p_{\rm T} < 12 GeV/cc. The result indicates a positive v2v_2 for non-prompt D0\rm D^0 mesons with a significance of 2.7σ\sigma. The non-prompt D0\rm D^0-meson v2v_2 is lower than that of prompt non-strange D mesons with 3.2σ\sigma significance in 2<pT<82 < p_{\rm T} < 8 GeV/cc, and compatible with the v2v_2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties
    • 

    corecore