44 research outputs found

    Direct measurement of the Husimi-Q function of the electric-field in the time-domain

    Full text link
    We develop the theoretical tools necessary to promote electro-optic sampling to a time-domain quantum tomography technique. Our proposed framework implements detection of the time evolution of both the electric-field of a propagating electromagnetic wave and its Hilbert transform (quadrature). Direct detection of either quadrature is not strictly possible in the time-domain, detection efficiency approaching zero when an exact mode-matching to either quadrature is reached. As all real signals have a limited bandwidth, we can trace out the irrelevant sampling bandwidth to optimize the detection efficiency while preserving quantum information of the relevant signal. Through the developed understanding of the mode structure of the amplitude and Hilbert transform quadratures, we propose multiplexing and mode-matching operations on the gating function to extract full quantum information on both quantities, simultaneously. The proposed methology is poised to open a novel path toward quantum state tomography and quantum spectroscopy directly in the time domain.Comment: 9 pages, 7 figure

    Paraxial Theory of Direct Electro-Optic Sampling of the Quantum Vacuum

    Full text link
    Direct detection of vacuum fluctuations and analysis of sub-cycle quantum properties of the electric field are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with multi-terahertz vacuum field modes leads to an increase of the signal variance with respect to the shot noise level. The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short probe pulse durations, tight focusing, and sufficiently large number of photons per probe pulse. If the vacuum input is squeezed, the signal variance depends on the probe delay. Temporal positions with noise level below the pure vacuum may be traced with a sub-cycle accuracy.Comment: 10 pages, 6 figure

    Nonlinear acousto-magneto-plasmonics

    Full text link
    We review the recent progress in experimental and theoretical research of interactions between the acoustic, magnetic and plasmonic transients in hybrid metal-ferromagnet multilayer structures excited by ultrashort laser pulses. The main focus is on understanding the nonlinear aspects of the acoustic dynamics in materials as well as the peculiarities in the nonlinear optical and magneto-optical response. For example, the nonlinear optical detection is illustrated in details by probing the static magneto-optical second harmonic generation in gold-cobalt-silver trilayer structures in Kretschmann geometry. Furthermore, we show experimentally how the nonlinear reshaping of giant ultrashort acoustic pulses propagating in gold can be quantified by time-resolved plasmonic interferometry and how these ultrashort optical pulses dynamically modulate the optical nonlinearities. The effective medium approximation for the optical properties of hybrid multilayers facilitates the understanding of novel optical detection techniques. In the discussion we highlight recent works on the nonlinear magneto-elastic interactions, and strain-induced effects in semiconductor quantum dots.Comment: 30 pages, 12 figures, to be published as a Topical Review in the Journal of Optic

    Precise Determination of Minimum Achievable Temperature for Solid-State Optical Refrigeration

    Full text link
    We measure the minimum achievable temperature (MAT) as a function of excitation wavelength in anti-Stokes fluorescence cooling of high purity Yb3+-doped LiYF4 (Yb:YLF) crystal. Such measurements were obtained by developing a sensitive noncontact thermometry that is based on a two-band differential luminescence spectroscopy using balanced photo-detectors. These measurements are in excellent agreement with the prediction of the laser cooling model and identify MAT of 110 K at 1020 nm, corresponding to E4-E5 Stark manifold transition in Yb:YLF crystal.Comment: 10 pages, 6 figure

    Subcycle squeezing of light from a time flow perspective

    Full text link
    Light as a carrier of information and energy plays a fundamental role in both general relativity and quantum physics, linking these areas that are still not fully compliant with each other. Its quantum nature and spatio-temporal structure are exploited in many intriguing applications ranging from novel spectroscopy methods of complex many-body phenomena to quantum information processing and subwavelength lithography. Recent access to subcycle quantum features of electromagnetic radiation promises a new class of time-dependent quantum states of light. Paralleled with the developments in attosecond science, these advances motivate an urgent need for a theoretical framework that treats arbitrary wave packets of quantum light intrinsically in the time domain. Here, we formulate a consistent time domain theory of the generation and sampling of few-cycle and subcycle pulsed squeezed states, allowing for a relativistic interpretation in terms of induced changes in the local flow of time. Our theory enables the use of such states as a resource for novel ultrafast applications in quantum optics and quantum information.Comment: 24 pages, 7 figures (including supplementary information

    Femtosecond Transfer and Manipulation of Persistent Hot-Trion Coherence in a Single CdSe/ZnSe Quantum Dot

    Full text link
    Ultrafast transmission changes around the fundamental trion resonance are studied after exciting a p-shell exciton in a negatively charged II-VI quantum dot. The biexcitonic induced absorption reveals quantum beats between hot trion states at 133 GHz. While interband dephasing is dominated by relaxation of the P-shell hole within 390 fs, trionic coherence remains stored in the spin system for 85 ps due to Pauli blocking of the triplet electron. The complex spectro-temporal evolution of transmission is explained analytically by solving the Maxwell-Liouville equations. Pump and probe polarizations provide full control over amplitude and phase of the quantum beats

    Enhanced Electro-Optic Sampling with Quantum Probes

    Full text link
    Employing electro-optic sampling (EOS) with ultrashort probe pulses, recent experiments showed direct measurements of quantum vacuum fields and their correlations on subcycle timescales. Here, we propose a quantum-enhanced EOS where photon-number entangled twin beams are used to derive conditioned non-classical probes. In the case of the quantum vacuum, this leads to a six-fold improvement in the signal-to-noise ratio over the classically-probed EOS. In addition, engineering of the conditioning protocol yields a reliable way to extract higher-order moments of the quantum noise distribution and robust discrimination of the input quantum states, for instance a vacuum and a few-photon cat state. These improvements open a viable route towards robust tomography of quantum fields in space-time, an equivalent of homodyne detection in energy-momentum space, and the possibility of precise experiments in real-space quantum electrodynamics.Comment: 12 pages, 15 figure
    corecore