3 research outputs found

    Enhanced Spectral Density of a Single Germanium Vacancy Center in a Nanodiamond by Cavity-Integration

    Full text link
    Color centers in diamond, among them the negatively-charged germanium vacancy (GeV^-), are promising candidates for many applications of quantum optics such as a quantum network. For efficient implementation, the optical transitions need to be coupled to a single optical mode. Here, we demonstrate the transfer of a nanodiamond containing a single ingrown GeV- center with excellent optical properties to an open Fabry-P\'erot microcavity by nanomanipulation utilizing an atomic force microscope. Coupling of the GeV- defect to the cavity mode is achieved, while the optical resonator maintains a high finesse of F = 7,700 and a 48-fold spectral density enhancement is observed. This article demonstrates the integration of a GeV- defect with a Fabry-P\'erot microcavity under ambient conditions with the potential to extend the experiments to cryogenic temperatures towards an efficient spin-photon platform.Comment: 6 pages, 3 figures. The article has been accepted by Applied Physics Letters. It is found at https://doi.org/10.1063/5.0156787. Added acknowledgment: S.S. acknowledges support of the Marie Curie ITN project LasIonDef (GA n.956387

    Spectral Emission Dependence of Tin‐Vacancy Centers in Diamond from Thermal Processing and Chemical Functionalization

    Get PDF
    We report a systematic photoluminescence (PL) investigation of the spectral emission properties of individual optical defects fabricated in diamond upon ion implantation and annealing. Three spectral lines at 620 nm, 631 nm, and 647 nm are identified and attributed to the SnV center due to their occurrence in the PL spectra of the very same single-photon emitting defects. We show that the relative occurrence of the three spectral features can be modified by oxidizing the sample surface following thermal annealing. We finally report the relevant emission properties of each class of individual emitters, including the excited state emission lifetime and the emission intensity saturation parameters.Comment: 12 pages, 6 figures, 1 tabl

    Efficiency Optimization of Ge-V Quantum Emitters in Single-Crystal Diamond upon Ion Implantation and HPHT Annealing

    Get PDF
    The authors report on the characterization at the single-defect level of germanium-vacancy (GeV) centers in diamond produced upon Ge− ion implantation and different subsequent annealing processes, with a specific focus on the effect of high-pressure-high-temperature (HPHT) processing on their quantum-optical properties. Different post-implantation annealing conditions are explored for the optimal activation of GeV centers, namely, 900 °C 2 h, 1000 °C 10 h, 1500 °C 1 h under high vacuum, and 2000 °C 15 min at 6 GPa pressure. A systematic analysis of the relevant emission properties, including the emission intensity in saturation regime and the excited state radiative lifetime, is performed on the basis of a set of ion-implanted samples, with the scope of identifying the most suitable conditions for the creation of GeV centers with optimal quantum-optical emission properties. The main performance parameter adopted here to describe the excitation efficiency of GeV centers as single-photon emitters is the ratio between the saturation optical excitation power and the emission intensity at saturation. The results show an up to eightfold emission efficiency increase in HPHT-treated samples with respect to conventional annealing in vacuum conditions, suggesting a suitable thermodynamic pathway toward the repeatable fabrication of ultra-bright GeV centers for single-photon generation purposes
    corecore