16 research outputs found

    Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol

    No full text
    1,3-Propanediol (1,3-PDO) can be produced biologically through glycerol fermentation. While such a process typically involves a pure culture system, particularly for crude glycerol, there would be operational advantages if a mixed population could be used. However, in the latter case the yield is typically low. Here, we use electrical current as the driving force for a mixed population fermenting glycerol in the cathode of a microbial bioelectrochemical system (BES). The carbon and electron flows were monitored by a titration and off-gas analysis (TOGA) sensor, and the syntrophic interactions in the BES were also investigated. Results show that on a carbon yield basis, current enhanced 1,3-PDO production from 24.8% (without current) to 50.1% (with a polarized biocathode at -0.9 V versus standard hydrogen electrode, SHE). Flux analysis indicated that the reductive current can be integrated into glycerol metabolism to enhance 1,3-PDO yield and that glycerol metabolism was redirected from propionate fermentation to 1,3-PDO production. A polarization of -0.6 V (vs SHE) resulted in more fermentative hydrogen production (from 2.7% to 8.0% on electron basis). 1,3-PDO production was also enhanced with hydrogen supply (37.7% on carbon basis), by suppressing hydrogen fermentation. Moreover, interspecies hydrogen transfer encouraged hydrogenotrophic methanogenesis, which was also accelerated by the cathodic polarization

    Biological processes for hydrogen production

    No full text
    Methane is produced usually from organic waste in a straightforward anaerobic digestion process. However, hydrogen production is technically more challenging as more stages are needed to convert all biomass to hydrogen because of thermodynamic constraints. Nevertheless, the benefit of hydrogen is that it can be produced, both biologically and thermochemically, in more than one way from either organic compounds or water. Research in biological hydrogen production is booming, as reflected by the myriad of recently published reviews on the topic. This overview is written from the perspective of how to transfer as much energy as possible from the feedstock into the gaseous products hydrogen, and to a lesser extent, methane. The status and remaining challenges of all the biological processes are concisely discussed
    corecore