4 research outputs found

    MIBiG 2.0: a repository for biosynthetic gene clusters of known function

    Get PDF
    Fueled by the explosion of (meta)genomic data, genome mining of specialized metabolites has become a major technology for drug discovery and studying microbiome ecology. In these efforts, computational tools like antiSMASH have played a central role through the analysis of Biosynthetic Gene Clusters (BGCs). Thousands of candidate BGCs from microbial genomes have been identified and stored in public databases. Interpreting the function and novelty of these predicted BGCs requires comparison with a well-documented set of BGCs of known function. The MIBiG (Minimum Information about a Biosynthetic Gene Cluster) Data Standard and Repository was established in 2015 to enable curation and storage of known BGCs. Here, we present MIBiG 2.0, which encompasses major updates to the schema, the data, and the online repository itself. Over the past five years, 851 new BGCs have been added. Additionally, we performed extensive manual data curation of all entries to improve the annotation quality of our repository. We also redesigned the data schema to ensure the compliance of future annotations. Finally, we improved the user experience by adding new features such as query searches and a statistics page, and enabled direct link-outs to chemical structure databases. The repository is accessible online at https://mibig.secondarymetabolites.org/

    A computational framework for systematic exploration of biosynthetic diversity from large-scale genomic data

    No full text
    Genome mining has become a key technology to explore and exploit natural product diversity through the identification and analysis of biosynthetic gene clusters (BGCs). Initially, this was performed on a single-genome basis; currently, the process is being scaled up to large-scale mining of pan-genomes of entire genera, complete strain collections and metagenomic datasets from which thousands of bacterial genomes can be extracted at once. However, no bioinformatic framework is currently available for the effective analysis of datasets of this size and complexity. Here, we provide a streamlined computational workflow, tightly integrated with antiSMASH and MIBiG, that consists of two new software tools, BiG-SCAPE and CORASON. BiG-SCAPE facilitates rapid calculation and interactive visual exploration of BGC sequence similarity networks, grouping gene clusters at multiple hierarchical levels, and includes a 'glocal' alignment mode that accurately groups both complete and fragmented BGCs. CORASON employs a phylogenomic approach to elucidate the detailed evolutionary relationships between gene clusters by computing high-resolution multi-locus phylogenies of all BGCs within and across gene cluster families (GCFs), and allows researchers to comprehensively identify all genomic contexts in which particular biosynthetic gene cassettes are found. We validate BiG-SCAPE by correlating its GCF output to metabolomic data across 403 actinobacterial strains. Furthermore, we demonstrate the discovery potential of the platform by using CORASON to comprehensively map the phylogenetic diversity of the large detoxin/rimosamide gene cluster clan, prioritizing three new detoxin families for subsequent characterization of six new analogs using isotopic labeling and analysis of tandem mass spectrometric data

    A computational framework to explore large-scale biosynthetic diversity

    No full text
    Genome mining has become a key technology to exploit natural product diversity. Although initially performed on a single-genome basis, the process is now being scaled up to mine entire genera, strain collections and microbiomes. However, no bioinformatic framework is currently available for effectively analyzing datasets of this size and complexity. In the present study, a streamlined computational workflow is provided, consisting of two new software tools: the 'biosynthetic gene similarity clustering and prospecting engine' (BiG-SCAPE), which facilitates fast and interactive sequence similarity network analysis of biosynthetic gene clusters and gene cluster families; and the 'core analysis of syntenic orthologues to prioritize natural product gene clusters' (CORASON), which elucidates phylogenetic relationships within and across these families. BiG-SCAPE is validated by correlating its output to metabolomic data across 363 actinobacterial strains and the discovery potential of CORASON is demonstrated by comprehensively mapping biosynthetic diversity across a range of detoxin/rimosamide-related gene cluster families, culminating in the characterization of seven detoxin analogues

    MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters

    No full text
    With an ever-increasing amount of (meta)genomic data being deposited in sequence databases,(meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database upto-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org
    corecore