64 research outputs found

    Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalisation of gelonin

    Get PDF
    Photochemical internalisation (PCI) is a technique for releasing biologically active macromolecules from endocytic vesicles by light activation of a photosensitiser localised in the same vesicles of targeted cells. This study investigated the PCI of the toxin gelonin as a way of enhancing the effect of photodynamic therapy (PDT) on a human malignant fibrous histiocytoma transplanted into nude mice using the photosensitiser disulphonated aluminium phthalocyanine (AlPcS2a). Pharmacokinetic studies after intraperitoneal administration showed that the serum level of AlPcS2a fitted a biexponential model (half-lives of 1.8 and 26.7 h). The tumour concentration was roughly constant up to 48 h, although fluorescence microscopy showed that the drug location was initially mainly vascular, but became intracellular by 48 h. To compare PDT with PCI, 48 h after intraperitoneal injection of 10 mg kg−1 AlPcS2a, and 6 h after direct intratumour injection of 50 μg gelonin (PCI) or a similar volume of phosphate-buffered saline (PDT controls), tumour-bearing animals were exposed to red light (150 J cm−2). Complete response was observed for more than 100 days in 50% of the PCI tumours but only 10% of the PDT tumours (P<0.01). In tumours examined histologically 4 days after light delivery, the depth of necrosis was 3–4 mm after PDT, but 7 mm after PCI. The deeper effect after PCI demonstrates that the light fluence needed to kill tumour is less than with PDT. We conclude that PCI with gelonin can markedly enhance the effect of PDT on this type of tumour and may have a role clinically as an adjunct to surgery to control localised disease

    Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy

    Get PDF
    The development of methods for specific delivery of drugs is an important issue for many cancer therapy approaches. Most of macromolecular drugs are taken into the cell through endocytosis and, being unable to escape from endocytic vesicles, eventually are degraded there, which hinders their therapeutic usefulness. We have developed a method, called photochemical internalization, based on light-induced photochemical reactions, disrupting endocytic vesicles specifically within illuminated sites e.g. tumours. Here we present a new drug delivery concept based on photochemical internalization-principle – photochemical disruption of endocytic vesicles before delivery of macromolecules, leading to an instant endosomal release instead of detrimental stay of the molecules in endocytic vesicles. Previously we have shown that illumination applied after the treatment with macromolecules substantially improved their biological effect both in vitro and in vivo. Here we demonstrate that exposure to light before delivery of protein toxin gelonin improves gelonin effect in vitro much more than light after. However, in vitro transfection with reporter genes delivered by non-viral and adenoviral vectors is increased more than 10- and six-fold, respectively, by both photochemical internalization strategies. The possible cellular mechanisms involved, and the potential of this new method for practical application of photochemical internalization concept in cancer therapy are discussed

    Multi-Modality Therapeutics with Potent Anti-Tumor Effects: Photochemical Internalization Enhances Delivery of the Fusion Toxin scFvMEL/rGel

    Get PDF
    BACKGROUND: There is a need for drug delivery systems (DDS) that can enhance cytosolic delivery of anti-cancer drugs trapped in the endo-lysosomal compartments. Exposure of cells to specific photosensitizers followed by light exposure (photochemical internalization, PCI) results in transfer of agents from the endocytic compartment into the cytosol. METHODOLOGY AND PRINCIPAL FINDINGS: The recombinant single-chain fusion construct scFvMEL/rGel is composed of an antibody targeting the progenitor marker HMW-MAA/NG2/MGP/gp240 and the highly effective toxin gelonin (rGel). Here we demonstrate enhanced tumor cell selectivity, cytosolic delivery and anti-tumor activity by applying PCI of scFvMEL/rGel. PCI performed by light activation of cells co-incubated with scFvMEL/rGel and the endo-lysosomal targeting photosensitizers AlPcS(2a) or TPPS(2a) resulted in enhanced cytotoxic effects against antigen-positive cell lines, while no differences in cytotoxicity between the scFvMEL/rGel and rGel were observed in antigen-negative cells. Mice bearing well-developed melanoma (A-375) xenografts (50-100 mm(3)) were treated with PCI of scFvMEL/rGel. By 30 days after injection, approximately 100% of mice in the control groups had tumors>800 mm(3). In contrast, by day 40, 50% of mice in the PCI of scFvMEL/rGel combination group had tumors<800 mm(3) with no increase in tumor size up to 110 days. PCI of scFvMEL/rGel resulted in a synergistic effect (p<0.05) and complete regression (CR) in 33% of tumor-bearing mice (n = 12). CONCLUSIONS/SIGNIFICANCE: This is a unique demonstration that a non-invasive multi-modality approach combining a recombinant, targeted therapeutic such as scFvMEL/rGel and PCI act in concert to provide potent in vivo efficacy without sacrificing selectivity or enhancing toxicity. The present DDS warrants further evaluation of its clinical potential

    Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    Get PDF
    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone (MTZ, chemotherapeutic) plus illumination potentiates cytotoxicity in MDR cancer cells. We mapped the extent of intracellular co-localisation of drug/photosensitiser. We determined whether PCI altered drug-excreting efflux pump P-glycoprotein (Pgp) expression or function in MDR cells. Bladder and breast cancer cells and their Pgp-overexpressing MDR subclones (MGHU1, MGHU1/R, MCF-7, MCF-7/R) were given hypericin/MTZ combinations, with/without blue-light illumination. Pilot experiments determined appropriate sublethal doses for each. Viability was determined by the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide assay. Intracellular localisation was mapped by confocal microscopy. Pgp expression was detected by immunofluorescence and Pgp function investigated by Rhodamine123 efflux on confocal microscopy. MTZ alone (0.1–0.2 μg ml−1) killed up to 89% of drug-sensitive cells; MDR cells exhibited less cytotoxicity (6–28%). Hypericin (0.1–0.2 μM) effects were similar for all cells; light illumination caused none or minimal toxicity. In combination, MTZ /hypericin plus illumination, potentiated MDR cell killing, vs hypericin or MTZ alone. (MGHU1/R: 38.65 and 36.63% increase, P<0.05; MCF-7/R: 80.2 and 46.1% increase, P<0.001). Illumination of combined MTZ/hypericin increased killing by 28.15% (P<0.05 MGHU1/R) compared to dark controls. Intracytoplasmic vesicular co-localisation of MTZ/hypericin was evident before illumination and at serial times post-illumination. MTZ was always found in sensitive cell nuclei, but not in dark resistant cell nuclei. In illuminated resistant cells there was some mobilisation of MTZ into the nucleus. Pgp expression remained unchanged, regardless of drug exposure. Pgp efflux was blocked by the Pgp inhibitor verapamil (positive control) but not impeded by hypericin. The increased killing of MDR cancer cells demonstrated is consistent with PCI. PCI is a promising technique for enhancing treatment efficacy

    Comparison of In vitro Nanoparticles Uptake in Various Cell Lines and In vivo Pulmonary Cellular Transport in Intratracheally Dosed Rat Model

    Get PDF
    In present study, the potential drug delivery of nanoformulations was validated via the comparison of cellular uptake of nanoparticles in various cell lines and in vivo pulmonary cellular uptake in intratracheally (IT) dosed rat model. Nanoparticles were prepared by a bench scale wet milling device and incubated with a series of cell lines, including Caco-2, RAW, MDCK and MDCK transfected MDR1 cells. IT dosed rats were examined for the pulmonary cellular uptake of nanoparticles. The processes of nanoparticle preparation did not alter the crystalline state of the material. The uptake of nanoparticles was observed most extensively in RAW cells and the least in Caco-2 cells. Efflux transporter P-gp did not prevent cell from nanoparticles uptake. The cellular uptake of nanoparticles was also confirmed in bronchoalveolar lavage (BAL) fluid cells and in bronchiolar epithelial cells, type II alveolar epithelial cells in the intratracheally administrated rats. The nanoparticles uptake in MDCK, RAW cells and in vivo lung epithelial cells indicated the potential applications of nanoformulation for poorly soluble compounds. The observed limited direct uptake of nanoparticles in Caco-2 cells suggests that the improvement in oral bioavailability by particle size reduction is via increased dissolution rate rather than direct uptake

    Linking Self-Incompatibility, Dichogamy, and Flowering Synchrony in Two Euphorbia Species: Alternative Mechanisms for Avoiding Self-Fertilization?

    Get PDF
    Background: Plant species have several mechanisms to avoid selfing such as dichogamy or a self-incompatibility response. Dichogamy in a single flower may reduce autogamy but, to avoid geitonogamy, plants must show flowering synchronization among all their flowers (i.e. synchronous dichogamy). It is hypothesized that one species would not simultaneously show synchronous dichogamy and self-incompatibility because they are redundant mechanisms to reduce selfing; however, this has not been accurately assessed. Methodology/Principal Findings: This expectation was tested over two years in two natural populations of the closely related Mediterranean spurges Euphorbia boetica and E. nicaeensis, which completely avoid autogamy by protogyny at the cyathia level. Both spurges showed a high population synchrony (Z,79), and their inflorescences flower synchronously. In E. nicaeensis, there was no overlap among the cyathia in anthesis of successive inflorescence levels and the overlap between sexual phases of cyathia of the same inflorescence level was uncommon (4–16%). In contrast, E. boetica showed a high overlap among consecutive inflorescence levels (74–93%) and between sexual phases of cyathia of the same inflorescence level (48–80%). The flowering pattern of both spurges was consistent in the two populations and over the two successive years. A hand-pollination experiment demonstrated that E. nicaeensis was strictly self-compatible whereas E. boetica was partially self-incompatible. Conclusions/Significance: We propose that the complex pattern of synchronized protogyny in E. nicaeensis prevents geitonogamous crosses and, consequently, avoids selfing and inbreeding depression. In E. boetica, a high probability of geitonogamous crosses may occur but, alternatively, this plant escapes selfing through a self-incompatibility response. We posit that synchronous dichogamy and physiological self-incompatibility do not co-occur in the same species because each process is sufficiently effective in avoiding self-fertilization.España Ministerio de Ciencia y Tecnología PLO CGL2005-03731; CGL2008-02533-EEspaña Ministerio de Ciencia y Tecnología MA CGL2009-0825
    corecore