159 research outputs found
Two-channel Kondo physics in two-impurity Kondo models
We consider the non-Fermi liquid quantum critical state of the spin-S
two-impurity Kondo model, and its potential realization in a quantum dot
device. Using conformal field theory (CFT) and the numerical renormalization
group (NRG), we show the critical point to be identical to that of the
two-channel Kondo model with additional potential scattering, for any spin-S.
Distinct conductance signatures are shown to arise as a function of device
asymmetry; with the `smoking gun' square-root behavior, commonly believed to
arise at low-energies, dominant only in certain regimes.Comment: 4.5 pages (with 3 figures) + 9 pages (with 4 figures) supplementary
materia
Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.
Breast milk enhances the predominance of Bifidobacterium species in the infant gut, probably due to its large concentration of human milk oligosaccharides (HMO). Here we screened infant-gut isolates of Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum using individual HMO, and compared the global transcriptomes of representative isolates on major HMO by RNA-seq. While B. infantis displayed homogeneous HMO-utilization patterns, B. bifidum were more diverse and some strains did not use fucosyllactose (FL) or sialyllactose (SL). Transcriptomes of B. bifidum SC555 and B. infantis ATCC 15697 showed that utilization of pooled HMO is similar to neutral HMO, while transcriptomes for growth on FL were more similar to lactose than HMO in B. bifidum. Genes linked to HMO-utilization were upregulated by neutral HMO and SL, but not by FL in both species. In contrast, FL induced the expression of alternative gene clusters in B. infantis. Results also suggest that B. bifidum SC555 does not utilize fucose or sialic acid from HMO. Surprisingly, expression of orthologous genes differed between both bifidobacteria even when grown on identical substrates. This study highlights two major strategies found in Bifidobacterium species to process HMO, and presents detailed information on the close relationship between HMO and infant-gut bifidobacteria
The comparative genomics of Bifidobacterium callitrichos reflects dietary carbohydrate utilization within the common marmoset gut
Bifidobacterium is a diverse genus of anaerobic, saccharolytic bacteria that colonize many animals, notably humans and other mammals. The presence of these bacteria in the gastrointestinal tract represents a potential coevolution between the gut microbiome and its mammalian host mediated by diet. To study the relationship between bifidobacterial gut symbionts and host nutrition, we analyzed the genome of two bifidobacteria strains isolated from the feces of a common marmoset (Callithrix jacchus), a primate species studied for its ability to subsist on host-indigestible carbohydrates. Whole genome sequencing identified these isolates as unique strains of Bifidobacterium callitrichos. All three strains, including these isolates and the previously described type strain, contain genes that may enable utilization of marmoset dietary substrates. These include genes predicted to contribute to galactose, arabinose, and trehalose metabolic pathways. In addition, significant genomic differences between strains suggest that bifidobacteria possess distinct roles in carbohydrate metabolism within the same host. Thus, bifidobacteria utilize dietary components specific to their host, both humans and non-human primates alike. Comparative genomics suggests conservation of possible coevolutionary relationships within the primate clade
A Human Gut Commensal Ferments Cranberry Carbohydrates to Produce Formate
Commensal bifidobacteria colonize the human gastrointestinal tract and catabolize glycans that are impervious to host digestion. Accordingly, Bifidobacterium longum typically secretes acetate and lactate as fermentative end products. This study tested the hypothesis that B. longum utilizes cranberry-derived xyloglucans in a strain-dependent manner. Interestingly, the B. longum strain that efficiently utilizes cranberry xyloglucans secretes 2.0 to 2.5 mol of acetate-lactate. The 1.5 acetate:lactate ratio theoretical yield obtained in hexose fermentations shifts during xyloglucan metabolism. Accordingly, this metabolic shift is characterized by increased acetate and formate production at the expense of lactate. α-L-Arabinofuranosidase, an arabinan endo-1,5-α-L-arabinosidase, and a β-xylosidase with a carbohydrate substrate-binding protein and carbohydrate ABC transporter membrane proteins are upregulated (\u3e2-fold change), which suggests carbon flux through this catabolic pathway. Finally, syntrophic interactions occurred with strains that utilize carbohydrate products derived from initial degradation from heterologous bacteria
Bifidobacterium infantis Metabolizes 2\u27Fucosyllactose-Derived and Free Fucose Through a Common Catabolic Pathway Resulting in 1,2-Propanediol Secretion
Human milk oligosaccharides (HMOs) enrich beneficial bifidobacteria in the infant gut microbiome which produce molecules that impact development and physiology. 2\u27fucosyllactose (2\u27FL) is a highly abundant fucosylated HMO which is utilized by Bifidobacterium longum subsp. infantis, despite limited scientific understanding of the underlying mechanism. Moreover, there is not a current consensus on whether free fucose could be metabolized when not incorporated in a larger oligosaccharide structure. Based on metabolic and genomic analyses, we hypothesize that B. infantis catabolizes both free fucose and fucosyl oligosaccharide residues to produce 1,2-propanediol (1,2-PD). Accordingly, systems-level approaches including transcriptomics and proteomics support this metabolic path. Co-fermentation of fucose and limiting lactose or glucose was found to promote significantly higher biomass and 1,2-PD concentrations than individual substrates, suggesting a synergistic effect. In addition, and during growth on 2\u27FL, B. infantis achieves significantly higher biomass corresponding to increased 1,2-PD. These findings support a singular fucose catabolic pathway in B. infantis that is active on both free and HMO-derived fucose and intimately linked with central metabolism. The impact of fucose and 2\u27FL metabolism on B. infantis physiology provides insight into the role of fucosylated HMOs in influencing host- and microbe-microbe interactions within the infant gut microbiome
Probing single-electron scattering through a non-Fermi liquid charge-Kondo device
Among the exotic and yet unobserved features of multi-channel Kondo impurity
models is their sub-unitary single electron scattering. In the two-channel
Kondo model, for example, an incoming electron is fully scattered into a
many-body excitation such that the single particle Green function vanishes.
Here we propose to directly observe these features in a charge-Kondo device
encapsulated in a Mach-Zehnder interferometer - within a device already studied
in Ref.[1]. We provide detailed predictions for the visibility and phase of the
Aharonov-Bohm oscillations depending on the number of coupled channels and the
asymmetry of their couplings.Comment: 7 pages, 3 figure
The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility
As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health
Recommended from our members
Milk bioactives may manipulate microbes to mediate parent–offspring conflict
Among mammals, milk constituents directly influence the ecology of the infant’s commensal microbiota. The immunological and nutritional impacts of breast milk and microbiota are increasingly well understood; less clear are the consequences for infant behavior. Here, we propose that interactions among bioactives in mother’s milk and microbes in the infant gut contribute to infant behavioral phenotype and, in part, have the potential to mediate parent–offspring conflict. We hypothesize that infant behavior likely varies as a function of their mother’s milk composition interacting with the infant’s neurobiology directly and indirectly through the commensal gut bacteria. In this article, we will explore our hypothesis of a milk-microbiota-brain-behavior dynamic in the context of the coevolution between human milk oligosaccharides, bacteria, the gut–brain axis and behavior. Integrating established features of these systems allows us to generate novel hypotheses to motivate future research and consider potential implications of current and emerging clinical treatments
Recommended from our members
Human Milk Antibodies against S1 and S2 Subunits from SARS-CoV-2, HCoV-OC43, and HCoV-229E in Mothers with a Confirmed COVID-19 PCR, Viral SYMPTOMS, and Unexposed Mothers
Background: Preexisting immunity to SARS-CoV-2 could be related to cross-reactive antibodies to common human-coronaviruses (HCoVs). This study aimed to evaluate whether human milk antibodies against to S1 and S2 subunits SARS-CoV-2 are cross-reactive to S1 and S2 subunits HCoV-OC43 and HCoV-229E in mothers with a confirmed COVID-19 PCR test, in mothers with previous viral symptoms during COVID-19 pandemic, and in unexposed mothers; Methods: The levels of secretory IgA (SIgA)/IgA, secretory IgM (SIgM)/IgM, and IgG specific to S1 and S2 SARS-CoV-2, and reactive to S1 + S2 HCoV-OC43, and HCoV-229E were measured in milk from 7 mothers with a confirmed COVID-19 PCR test, 20 mothers with viral symptoms, and unexposed mothers (6 Ctl1-2018 and 16 Ctl2-2018) using ELISA; Results: The S2 SARS-CoV-2 IgG levels were higher in the COVID-19 PCR (p = 0.014) and viral symptom (p = 0.040) groups than in the Ctl1-2018 group. We detected a higher number of positive correlations between the antigens and secretory antibodies in the COVID-19 PCR group than in the viral symptom and Ctl-2018 groups. S1 + S2 HCoV-OC43-reactive IgG was higher in the COVID-19 group than in the control group (p = 0.002) but did not differ for the other antibodies; Conclusions: Mothers with a confirmed COVID-19 PCR and mothers with previous viral symptoms had preexisting human milk antibodies against S2 subunit SARS-CoV-2. Human milk IgG were more specific to S2 subunit SARS-CoV-2 than other antibodies, whereas SIgA and SIgM were polyreactive and cross-reactive to S1 or S2 subunit SARS-CoV-2
Recommended from our members
Ecologies, synergies, and biological systems shaping human milk composition—a report from “Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)” Working Group 2
Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic “mixture” of independent components to synergistically support optimal infant health
- …