15 research outputs found

    Precursor B-ALL cell lines differentially respond to syk inhibition by entospletinib

    Get PDF
    Background: Impaired B-cell receptor (BCR) function has been associated with the pro-gress of several B-cell malignancies. The spleen tyrosine kinase (SYK) represents a potential therapeutic target in a subset of B-cell neoplasias. In precursor B-acute lymphoblastic leukemia (B-ALL), the pathogenic role and therapeutic potential of SYK is still controversially discussed. We evaluate the application of the SYK inhibitor entospletinib (Ento) in pre-and pro-B-ALL cell lines, character-izing the biologic and molecular effects. Methods: SYK expression was characterized in pre-B-ALL (NALM-6) and pro-B-ALL cell lines (SEM and RS4;11). The cell lines were exposed to different Ento concentrations and the cell biological response analyzed by proliferation, metabolic activity, apop-tosis induction, cell-cycle distribution and morphology. BCR pathway gene expression and protein modulations were further characterized. Results: Ento significantly induced anti-proliferative and pro-apoptotic effects in NALM-6 and SEM, while barely affecting RS4;11. Targeted RNAseq revealed pronounced gene expression modulation only in NALM-6, while Western Blot analyses demonstrated that vital downstream effector proteins, such as pAKT, pERK, pGSK3β, p53 and BCL-6, were affected by Ento exposure in the inhibitor-sensitive cell lines. Conclusion: Different acting modes of Ento, independent of pre-BCR dependency, were characterized, unexpected in SEM. Ac-cordingly, SYK classifies as a potential target structure in a subset of pro-B-ALLs. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Combined Casein Kinase II inhibition and epigenetic modulation in acute B-lymphoblastic leukemia

    Get PDF
    Background: The tumor suppressor protein phosphatase and tensin homolog (PTEN) is a key regulator of the PI3K/AKT pathway which is frequently altered in a variety of tumors including a subset of acute B-lymphoblastic leukemias (B-ALL). While PTEN mutations and deletions are rare in B-ALL, promoter hypermethylation and posttranslational modifications are the main pathways of PTEN inactivation. Casein Kinase II (CK2) is often upregulated in B-ALL and phosphorylates both PTEN and DNA methyltransferase 3A, resulting in increased PI3K/AKT signaling and offering a potential mechanism for further regulation of tumor-related pathways. Methods: Here, we evaluated the effects of CK2 inhibitor CX-4945 alone and in combination with hypomethylating agent decitabine on B-ALL proliferation and PI3K/AKT pathway activation. We further investigated if CX-4945 intensified decitabine-induced hypomethylation and identified aberrantly methylated biological processes after CK2 inhibition. In vivo tumor cell proliferation in cell line and patient derived xenografts was assessed by longitudinal full body bioluminescence imaging and peripheral blood flow cytometry of NSG mice. Results: CX-4945 incubation resulted in CK2 inhibition and PI3K pathway downregulation thereby inducing apoptosis and anti-proliferative effects. CX-4945 further affected methylation patterns of tumor-related transcription factors and regulators of cellular metabolism. No overlap with decitabine-affected genes or processes was detected. Decitabine alone revealed only modest anti-proliferative effects on B-ALL cell lines, however, if combined with CX-4945 a synergistic inhibition was observed. In vivo assessment of CX-4945 in B-ALL cell line xenografts resulted in delayed proliferation of B-ALL cells. Combination with DEC further decelerated B-ALL expansion significantly and decreased infiltration in bone marrow and spleen. Effects in patient-derived xenografts all harboring a t(4;11) translocation were heterogeneous. Conclusions: We herein demonstrate the anti-leukemic potential of CX-4945 in synergy with decitabine in vitro as well as in vivo identifying CK2 as a potentially targetable kinase in B-ALL

    Combined BCL-2 and PI3K/AKT Pathway Inhibition in <i>KMT2A</i>-Rearranged Acute B-Lymphoblastic Leukemia Cells

    No full text
    Numerous hematologic neoplasms, including acute B-lymphoblastic leukemia (B-ALL), are characterized by overexpression of anti-apoptotic BCL-2 family proteins. Despite the high clinical efficacy of the specific BCL-2 inhibitor venetoclax in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL), dose limitation and resistance argue for the early exploration of rational combination strategies. Recent data indicated that BCL-2 inhibition in B-ALL with KMT2A rearrangements is a promising intervention option; however, combinatorial approaches have not been in focus so far. The PI3K/AKT pathway has emerged as a possible target structure due to multiple interactions with the apoptosis cascade as well as relevant dysregulation in B-ALL. Herein, we demonstrate for the first time that combined BCL-2 and PI3K/AKT inhibition has synergistic anti-proliferative effects on B-ALL cell lines. Of note, all tested combinations (venetoclax + PI3K inhibitors idelalisib or BKM-120, as well as AKT inhibitors MK-2206 or perifosine) achieved comparable anti-leukemic effects. In a detailed analysis of apoptotic processes, among the PI3K/AKT inhibitors only perifosine resulted in an increased rate of apoptotic cells. Furthermore, the combination of venetoclax and perifosine synergistically enhanced the activity of the intrinsic apoptosis pathway. Subsequent gene expression studies identified the pro-apoptotic gene BBC3 as a possible player in synergistic action. All combinatorial approaches additionally modulated extrinsic apoptosis pathway genes. The present study provides rational combination strategies involving selective BCL-2 and PI3K/AKT inhibition in B-ALL cell lines. Furthermore, we identified a potential mechanistic background of the synergistic activity of combined venetoclax and perifosine application

    Precursor B-ALL Cell Lines Differentially Respond to SYK Inhibition by Entospletinib

    No full text
    Background: Impaired B-cell receptor (BCR) function has been associated with the progress of several B-cell malignancies. The spleen tyrosine kinase (SYK) represents a potential therapeutic target in a subset of B-cell neoplasias. In precursor B-acute lymphoblastic leukemia (B-ALL), the pathogenic role and therapeutic potential of SYK is still controversially discussed. We evaluate the application of the SYK inhibitor entospletinib (Ento) in pre- and pro-B-ALL cell lines, characterizing the biologic and molecular effects. Methods: SYK expression was characterized in pre-B-ALL (NALM-6) and pro-B-ALL cell lines (SEM and RS4;11). The cell lines were exposed to different Ento concentrations and the cell biological response analyzed by proliferation, metabolic activity, apoptosis induction, cell-cycle distribution and morphology. BCR pathway gene expression and protein modulations were further characterized. Results: Ento significantly induced anti-proliferative and pro-apoptotic effects in NALM-6 and SEM, while barely affecting RS4;11. Targeted RNAseq revealed pronounced gene expression modulation only in NALM-6, while Western Blot analyses demonstrated that vital downstream effector proteins, such as pAKT, pERK, pGSK3&beta;, p53 and BCL-6, were affected by Ento exposure in the inhibitor-sensitive cell lines. Conclusion: Different acting modes of Ento, independent of pre-BCR dependency, were characterized, unexpected in SEM. Accordingly, SYK classifies as a potential target structure in a subset of pro-B-ALLs

    Combined Application of Pan-AKT Inhibitor MK-2206 and BCL-2 Antagonist Venetoclax in B-Cell Precursor Acute Lymphoblastic Leukemia

    No full text
    Aberrant PI3K/AKT signaling is a hallmark of acute B-lymphoblastic leukemia (B-ALL) resulting in increased tumor cell proliferation and apoptosis deficiency. While previous AKT inhibitors struggled with selectivity, MK-2206 promises meticulous pan-AKT targeting with proven anti-tumor activity. We herein, characterize the effect of MK-2206 on B-ALL cell lines and primary samples and investigate potential synergistic effects with BCL-2 inhibitor venetoclax to overcome limitations in apoptosis induction. MK-2206 incubation reduced AKT phosphorylation and influenced downstream signaling activity. Interestingly, after MK-2206 mono application tumor cell proliferation and metabolic activity were diminished significantly independently of basal AKT phosphorylation. Morphological changes but no induction of apoptosis was detected in the observed cell lines. In contrast, primary samples cultivated in a protective microenvironment showed a decrease in vital cells. Combined MK-2206 and venetoclax incubation resulted in partially synergistic anti-proliferative effects independently of application sequence in SEM and RS4;11 cell lines. Venetoclax-mediated apoptosis was not intensified by addition of MK-2206. Functional assessment of BCL-2 inhibition via Bax translocation assay revealed slightly increased pro-apoptotic signaling after combined MK-2206 and venetoclax incubation. In summary, we demonstrate that the pan-AKT inhibitor MK-2206 potently blocks B-ALL cell proliferation and for the first time characterize the synergistic effect of combined MK-2206 and venetoclax treatment in B-ALL

    Cross-Species Comparison of the Pan-RAF Inhibitor LY3009120’s Anti-Tumor Effects in Equine, Canine, and Human Malignant Melanoma Cell Lines

    No full text
    Malignant melanomas (MMs) are the abnormal proliferation of melanocytes and are one of the lethal skin cancers in humans, equines, and canines. Accordingly, MMs in companion animals can serve as naturally occurring animal models, completing conventional cancer models. The common constitutive activation of the MAPK and PI3K pathways in MMs has been described in all three species. Targeting the related pathways is considered a potential option in comparative oncologic approaches. Herein, we present a cross-species comparative analysis exposing a set of ten melanoma cell lines (one human, three equine, and six canine) derived from primary tumors or metastasis to a pan-RAF and RAF dimer inhibitor (LY3009120). Cellular response (proliferation, biomass, metabolism, early and late apoptosis/necrosis, and morphology) and the presence of pathogenic single-nucleotide variants (SNVs) within the mutational hotspot genes BRAF exon 11 and 15, NRAS exon 2 and 3, KRAS exon 2, and KIT exon 11 were analyzed. This study showed that equine malignant melanoma (EMM) cells (MelDuWi) harbor the KRAS p.Q61H mutation, while canine malignant melanoma (CMM) cells (cRGO1 and cRGO1.2) carry NRAS p.G13R. Except for EMM metastasis cells eRGO6 (wild type of the above-mentioned hotspot genes), all melanoma cell lines exhibited a decrease in dose dependence after 48 and 72 h of exposure to LY3009120, independent of the mutation hotspot landscape. Furthermore, LY3009120 caused significant early apoptosis and late apoptosis/necrosis in all melanoma cell lines except for eRGO6. The anti-tumor effects of LY3009120 were observed in nine melanoma cell lines, indicating the potential feasibility of experimental trials with LY3009120. The present study reveals that the irradiation-resistant canine metastasis cells (cRGO1.2) harboring the NRAS p.G13R mutation are significantly LY3009120-sensitive, while the equine metastases-derived eRGO6 cells show significant resistance to LY3009120, which make them both valuable tools for studying resistance mechanisms in comparative oncology

    BTK and PI3K Inhibitors Reveal Synergistic Inhibitory Anti-Tumoral Effects in Canine Diffuse Large B-Cell Lymphoma Cells

    No full text
    Bruton’s tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) in the B-cell receptor (BCR) signaling pathway are considered potential therapeutic targets for the treatment of B-cell lymphomas, among which, diffuse large B-cell lymphoma (DLBCL) is the most common type. Herein, we comparatively evaluated the single and combined application of the BTK inhibitor ibrutinib and the selective PI3Kγ inhibitor AS-605240 in the canine DLBCL cell line CLBL-1. For further comparison, key findings were additionally analyzed in canine B-cell leukemia GL-1 and human DLBCL cell line SU-DHL-4. While ibrutinib alone induced significant anti-proliferative effects on all cell lines in a dose-dependent manner, AS-605240 only induced anti-proliferative effects at high concentrations. Interestingly, ibrutinib and AS-605240 acted synergistically, reducing cell proliferation and increasing apoptosis/necrosis in all cell lines and inducing morphological changes in CLBL-1. Moreover, the combined application of ibrutinib and AS-605240 reduced relative phosphorylation and, in some instances, the levels of the BTK, AKT, GSK3β, and ERK proteins. Comparative variant analysis of RNA-seq data among canine B- and T-lymphoid cell lines and primary B-cell lymphoma samples revealed potentially high-impact somatic variants in the genes that encode PI3K, which may explain why AS-605240 does not singly inhibit the proliferation of cell lines. The combination of ibrutinib and AS-605240 represents a promising approach that warrants further in vivo evaluation in dogs, potentially bearing significant value for the treatment of human DLBCL

    Inhibition of KRAS, MEK and PI3K Demonstrate Synergistic Anti-Tumor Effects in Pancreatic Ductal Adenocarcinoma Cell Lines

    No full text
    Simple Summary Small molecule inhibitors and targeted therapy are considered to have significant potential for pancreatic ductal adenocarcinoma therapies. Preclinical studies of novel inhibitors and inhibitor combinations can elucidate their acting mechanisms and provide valuable data for in vivo research and clinical trials. We explored the antitumor efficacy of KRAS inhibitors BI-3406 and sotorasib alone or in combination with the downstream inhibitors trametinib and buparlisib in PDAC cell lines, characterized by different KRAS mutational statuses. The two KRAS inhibitors demonstrated different anti-tumor efficacy and displayed synergistic or additive effects, when combined with downstream pathway inhibitors. These data emphasized the importance of KRAS as a therapeutic target for PDAC and indicate two distinct mechanisms of KRAS inhibition and their interactions with downstream pathway inhibitors. Abstract Kirsten rat sarcoma virus (KRAS) mutations are widespread in pancreatic ductal adenocarcinoma (PDAC) and contribute significantly to tumor initiation, progression, tumor relapse/resistance, and prognosis of patients. Although inhibitors against KRAS mutations have been developed, this therapeutic approach is not routinely used in PDAC patients. We investigated the anti-tumor efficacy of two KRAS inhibitors BI-3406 (KRAS::SOS1 inhibitor) and sotorasib (KRAS G12C inhibitor) alone or in combination with MEK1/2 inhibitor trametinib and/or PI3K inhibitor buparlisib in seven PDAC cell lines. Whole transcriptomic analysis of combined inhibition and control groups were comparatively analyzed to explore the corresponding mechanisms of inhibitor combination. Both KRAS inhibitors and corresponding combinations exhibited cytotoxicity against specific PDAC cell lines. BI-3406 enhance the efficacy of trametinib and buparlisib in BXPC-3, ASPC-1 and MIA PACA-2, but not in CAPAN-1, while sotorasib enhances the efficacy of trametinib and buparlisib only in MIA PACA-2. The whole transcriptomic analysis demonstrates that the two triple-inhibitor combinations exert antitumor effects by affecting related cell functions, such as affecting the immune system, cell adhesion, cell migration, and cytokine binding. As well as directly involved in RAF/MEK/ERK pathway and PI3K/AKT pathway affect cell survival. Our current study confirmed inhibition of KRAS and its downstream pathways as a potential novel therapy for PDAC and provides fundamental data for in vivo evaluations
    corecore