909 research outputs found
Energetics of Open Systems and Chemical Potential From Micro-Dynamics Viewpoints
We present the energetic aspect of open systems which may exchange particles
with their environments. Our attention shall be paid to the scale that the
motion of the particles is described by the classical Langevin dynamics. Along
a particular realization of the stochastic process, we study the energy
transfer into the open system from the environments. We are able to clarify how
much energy each particle carries when it enters or leaves the system. On the
other hand, the chemical potential should be considered as the concept in macro
scale, which is relevant to the free energy potential with respect to the
number of particles. Keywords: open systems, stochastic energetics, chemical
potentialComment: 7 pages, 1 figur
The Carnot Cycle for Small Systems: Irreversibility and the Cost of Operations
We employ the recently developed framework of the energetics of stochastic
processes (called `stochastic energetics'), to re-analyze the Carnot cycle in
detail, taking account of fluctuations, without taking the thermodynamic limit.
We find that both processes of connection to and disconnection from heat
baths and adiabatic processes that cause distortion of the energy distribution
are sources of inevitable irreversibility within the cycle. Also, the so-called
null-recurrence property of the cumulative efficiency of energy conversion over
many cycles and the irreversible property of isolated, purely mechanical
processes under external `macroscopic' operations are discussed in relation to
the impossibility of a perpetual machine, or Maxwell's demon.Comment: 11 pages with 3 figures. Resubmitted to Physical Review E. Many
paragraphs have been modifie
Inattainability of Carnot efficiency in the Brownian heat engine
We discuss the reversibility of Brownian heat engine. We perform asymptotic
analysis of Kramers equation on B\"uttiker-Landauer system and show
quantitatively that Carnot efficiency is inattainable even in a fully
overdamping limit. The inattainability is attributed to the inevitable
irreversible heat flow over the temperature boundary.Comment: 5 pages, to appear in Phys. Rev.
Microscopic heat from the energetics of stochastic phenomena
The energetics of the stochastic process has shown the balance of energy on
the mesoscopic level. The heat and the energy defined there are, however,
generally different from their macroscopic counterpart. We show that this
discrepancy can be removed by adding to these quantities the reversible heat
associated with the mesoscopic free energy.Comment: 4 pages, 0 figur
Thermodynamics of a Colloidal Particle in a Time-Dependent Non-Harmonic Potential
We study the motion of an overdamped colloidal particle in a time-dependent
non-harmonic potential. We demonstrate the first law-like balance between
applied work, exchanged heat, and internal energy on the level of a single
trajectory. The observed distribution of applied work is distinctly
non-Gaussian in good agreement with numerical calculations. Both the Jarzynski
relation and a detailed fluctuation theorem are verified with good accuracy
Energetics of Forced Thermal Ratchet
Molecular motors are known to have the high efficiency of energy
transformation in the presence of thermal fluctuation.
Motivated by the surprising fact, recent studies of thermal ratchet models
are showing how and when work should be extracted from non-equilibrium
fluctuations.
One of the important finding was brought by Magnasco where he studied the
temperature dependence on the fluctuation-induced current in a ratchet
(multistable) system and showed that the current can generically be maximized
in a finite temperature.
The interesting finding has been interpreted that thermal fluctuation is not
harmful for the fluctuation-induced work and even facilitates its efficiency.
We show, however, this interpretation turns out to be incorrect as soon as we
go into the realm of the energetics
[Sekimoto,J.Phys.Soc.Jpn.66,1234-1237(1997)]: the efficiency of energy
transformation is not maximized at finite temperature, even in the same system
that Magnasco considered. The maximum efficiency is realized in the absence of
thermal fluctuation. The result presents an open problem whether thermal
fluctuation could facilitate the efficiency of energetic transformation from
force-fluctuation into work.Comment: 3pages, 4sets of figure
Molecular Chemical Engines: Pseudo-Static Processes and the Mechanism of Energy Transduction
We propose a simple theoretical model for a molecular chemical engine that
catalyzes a chemical reaction and converts the free energy released by the
reaction into mechanical work. Binding and unbinding processes of reactant and
product molecules to and from the engine are explicitly taken into account. The
work delivered by the engine is calculated analytically for infinitely slow
(``pseudo-static'') processes, which can be reversible (quasi-static) or
irreversible, controlled by an external agent. It is shown that the work larger
than the maximum value limited by the second law of thermodynamics can be
obtained in a single cycle of operation by chance, although the statistical
average of the work never exceeds this limit and the maximum work is delivered
if the process is reversible. The mechanism of the energy transductionis also
discussed.Comment: 8 pages, 3 figues, submitted to J. Phys. Soc. Jp
- …