5,090 research outputs found

    Theory of the waterfall phenomenon in cuprate superconductors

    Full text link
    Based on exact diagonalization and variational cluster approximation calculations we study the relationship between charge transfer models and the corresponding single band Hubbard models. We present an explanation for the waterfall phenomenon observed in angle resolved photoemission spectroscopy (ARPES) on cuprate superconductors. The phenomenon is due to the destructive interference between the phases of the O2p orbitals belonging to a given Zhang-Rice singlet and the Bloch phases of the photohole which occurs in certain regions of k-space. It therefore may be viewed as a direct experimental visualisation of the Zhang-Rice construction of an effective single band model for the CuO2 plane.Comment: 11 pages, 9 Postscript figure

    An automata characterisation for multiple context-free languages

    Full text link
    We introduce tree stack automata as a new class of automata with storage and identify a restricted form of tree stack automata that recognises exactly the multiple context-free languages.Comment: This is an extended version of a paper with the same title accepted at the 20th International Conference on Developments in Language Theory (DLT 2016

    The Complexity of Fixed-Height Patterned Tile Self-Assembly

    Full text link
    We characterize the complexity of the PATS problem for patterns of fixed height and color count in variants of the model where seed glues are either chosen or fixed and identical (so-called non-uniform and uniform variants). We prove that both variants are NP-complete for patterns of height 2 or more and admit O(n)-time algorithms for patterns of height 1. We also prove that if the height and number of colors in the pattern is fixed, the non-uniform variant admits a O(n)-time algorithm while the uniform variant remains NP-complete. The NP-completeness results use a new reduction from a constrained version of a problem on finite state transducers.Comment: An abstract version appears in the proceedings of CIAA 201

    Hydrodynamic interactions of spherical particles in Poiseuille flow between two parallel walls

    Full text link
    We study hydrodynamic interactions of spherical particles in incident Poiseuille flow in a channel with infinite planar walls. The particles are suspended in a Newtonian fluid, and creeping-flow conditions are assumed. Numerical results, obtained using our highly accurate Cartesian-representation algorithm [Physica A xxx, {\bf xx}, 2005], are presented for a single sphere, two spheres, and arrays of many spheres. We consider the motion of freely suspended particles as well as the forces and torques acting on particles adsorbed at a wall. We find that the pair hydrodynamic interactions in this wall-bounded system have a complex dependence on the lateral interparticle distance due to the combined effects of the dissipation in the gap between the particle surfaces and the backflow associated with the presence of the walls. For immobile particle pairs we have examined the crossover between several far-field asymptotic regimes corresponding to different relations between the particle separation and the distances of the particles from the walls. We have also shown that the cumulative effect of the far-field flow substantially influences the force distribution in arrays of immobile spheres. Therefore, the far-field contributions must be included in any reliable algorithm for evaluating many-particle hydrodynamic interactions in the parallel-wall geometry.Comment: submitted to Physics of Fluid

    Persistent effects of inertia on diffusion-influenced reactions: Theoretical methods and applications

    Full text link
    The Cattaneo-Vernotte model has been widely studied to take momentum relaxation into account in transport equations. Yet, the effect of reactions on the Cattaneo-Vernotte model has not been fully elucidated. At present, it is unclear how the current density associated with reactions can be expressed in the Cattaneo-Vernotte model. Herein, we derive a modified Cattaneo-Vernotte model by applying the projection operator method to the Fokker-Planck-Kramers equation with a reaction sink. The same modified Cattaneo-Vernotte model can be derived by a Grad procedure. We show that the inertial effect influences the reaction rate coefficient differently depending on whether the intrinsic reaction rate constant in the reaction sink term depends on the solute relative velocity or not. The momentum relaxation effect can be expressed by a modified Smoluchowski equation including a memory kernel using the Cattaneo-Vernotte model. When the intrinsic reaction rate constant is independent of the reactant velocity and is localized, the modified Smoluchowski equation should be generalized to include a reaction term without a memory kernel. When the intrinsic reaction rate constant depends on the relative velocity of reactants, an additional reaction term with a memory kernel is required because of competition between the current density associated with the reaction and the diffusive flux during momentum relaxation. The competition effect influences even the long-time reaction rate coefficient.Comment: 2 figure

    Anomalous lateral diffusion in a viscous membrane surrounded by viscoelastic media

    Full text link
    We investigate the lateral dynamics in a purely viscous lipid membrane surrounded by viscoelastic media such as polymeric solutions. We first obtain the generalized frequency-dependent mobility tensor and focus on the case when the solvent is sandwiched by hard walls. Due to the viscoelasticity of the solvent, the mean square displacement of a disk embedded in the membrane exhibits an anomalous diffusion. An useful relation which connects the mean square displacement and the solvent modulus is provided. We also calculate the cross-correlation of the particle displacements which can be applied for two-particle tracking experiments.Comment: 6 pages, 2 figure

    Dispersive diffusion controlled distance dependent recombination in amorphous semiconductors

    Full text link
    The photoluminescence in amorphous semiconductors decays according to power law tdeltat^{-delta} at long times. The photoluminescence is controlled by dispersive transport of electrons. The latter is usually characterized by the power alphaalpha of the transient current observed in the time-of-flight experiments. Geminate recombination occurs by radiative tunneling which has a distance dependence. In this paper, we formulate ways to calculate reaction rates and survival probabilities in the case carriers execute dispersive diffusion with long-range reactivity. The method is applied to obtain tunneling recombination rates under dispersive diffusion. The theoretical condition of observing the relation delta=alpha/2+1delta = alpha/2 + 1 is obtained and theoretical recombination rates are compared to the kinetics of observed photoluminescence decay in the whole time range measured.Comment: To appear in Journal of Chemical Physic

    Alkylated-C-60 based soft materials: regulation of self-assembly and optoelectronic properties by chain branching

    Get PDF
    Derivatization of fullerene (C60) with branched aliphatic chains softens C60-based materials and enables the formation of thermotropic liquid crystals and room temperature nonvolatile liquids. This work demonstrates that by carefully tuning parameters such as type, number and substituent position of the branched chains, liquid crystalline C60 materials with mesophase temperatures suited for photovoltaic cell fabrication and room temperature nonvolatile liquid fullerenes with tunable viscosity can be obtained. In particular, compound 1, with branched chains, exhibits a smectic liquid crystalline phase extending from 84 °C to room temperature. Analysis of bulk heterojunction (BHJ) organic solar cells with a ca. 100 nm active layer of compound 1 and poly(3-hexylthiophene) (P3HT) as an electron acceptor and an electron donor, respectively, reveals an improved performance (power conversion efficiency, PCE: 1.6 ± 0.1%) in comparison with another compound, 10 (PCE: 0.5 ± 0.1%). The latter, in contrast to 1, carries linear aliphatic chains and thus forms a highly ordered solid lamellar phase at room temperature. The solar cell performance of 1 blended with P3HT approaches that of PCBM/P3HT for the same active layer thickness. This indicates that C60 derivatives bearing branched tails are a promising class of electron acceptors in soft (flexible) photovoltaic devices

    Development of a low-mass and high-efficiency charged particle detector

    Get PDF
    We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay KLπ0ννˉK_L \rightarrow \pi^0 \nu \bar{\nu}. The detector is important to suppress the background with charged particles to the level below the signal branching ratio predicted by the Standard Model (O(1011^{-11})). The detector consists of two layers of 3-mm-thick plastic scintillators with wavelength shifting fibers embedded and Multi Pixel Photon Counters for readout. We manufactured the counter and evaluated the performance such as light yield, timing resolution, and efficiency. With this design, we achieved the inefficiency per layer against penetrating charged particles to be less than 1.5×1051.5 \times 10^{-5}, which satisfies the requirement of the KOTO experiment determined from simulation studies.Comment: 20 pages, 18 figure
    corecore