7 research outputs found

    A study on the effect of different chemical routes on functionalization of MWCNTs by various groups (-COOH, -SO3H, -PO3H2)

    Get PDF
    Pristine multiwall carbon nanotubes [MWCNTs] have been functionalized with various groups (-COOH, -SO3H, -PO3H2) using different single- and double-step chemical routes. Various chemical treatments were given to MWCNTs using hydrochloric, nitric, phosphoric, and sulphuric acids, followed by a microwave treatment. The effect of the various chemical treatments and the dispersion using a surfactant via ultrasonication on the functionalization of MWCNTs has been studied. The results obtained have been compared with pristine MWCNTs. Scanning electron microscopy, energy dispersive X-ray [EDX] spectroscopy, and transmission electron microscopy confirm the dispersion and functionalization of MWCNTs. Their extent of functionalization with -SO3H and -PO3H2 groups from the EDX spectra has been observed to be higher for the samples functionalized with a double-step chemical route and a single-step chemical route, respectively. The ID/IG ratio calculated from Raman data shows a maximum defect concentration for the sample functionalized with the single-step chemical treatment using nitric acid. The dispersion of MWCNTs with the surfactant, Triton X-100, via ultrasonication helps in their unbundling, but the extent of functionalization mainly depends on the chemical route followed for their treatment. The functionalized carbon nanotubes can be used in proton conducting membranes for fuel cells

    2D graphene oxide–aptamer conjugate materials for cancer diagnosis

    No full text
    Abstract 2D graphene oxide (GO) with large surface area, multivalent structure can easily bind single-stranded DNA/RNA (aptamers) through hydrophobic/π-stacking interactions, whereas aptamers having small size, excellent chemical stability and low immunogenicity bind to their targets with high affinity and specificity. GO–aptamer conjugate materials synthesized by integrating aptamers with GO can thus provide a better alternative to antibody-based strategies for cancer diagnostic and therapy. Moreover, GO’s excellent fluorescence quenching properties can be utilized to develop efficient fluorescence-sensing platforms. In this review, recent advances in GO–aptamer conjugate materials for the detection of major cancer biomarkers have been discussed

    Micro- to Macroscopic Observations of MnAlPO-5 Nanocrystal Growth in Ionic-Liquid Media

    No full text
    International audienceMicro‐ and macroscopic studies of nucleation and growth processes of MnAlPO‐5 nanosized crystals under ionothermal synthesis conditions are reported herein. The samples treated at 150 °C were extracted from the reaction mixture at various stages of crystallization, and characterized by XRD; SEM; thermogravimetric analysis (TGA); 31P and 27Al solid‐state magic angle spinning (MAS) NMR, Raman, UV/Vis, and X‐ray fluorescence spectroscopy (XRF). The starting raw materials (alumina, manganese, and phosphorous) were dissolved completely in the ionic liquid and transformed into an amorphous solid after 5 h of ionothermal treatment. This amorphous solid then undergoes structural changes over the following 5–25 h, which result in an intermediate phase that consists of octahedral Al species linked to the manganese and phosphate species. The first MnAlPO‐5 nuclei on the surface of the intermediate can be observed after 50 h ionoheating. These nuclei further grow, as the surface of the intermediate is in full contact with the ionic liquid, to give crystalline MnAlPO‐5 nanoparticles with a mean diameter of 80 nm. The crystals become fully detached from the intermediate and are then liberated as discrete particles after 90 h heating. The transformation process from amorphous to intermediate and then to the crystalline MnAlPO‐5 nanoparticles shows that nucleation starts at the solid–liquid interface and continues through surface‐to‐core reversed‐growth until the entire amorphous solid is transformed into discrete nanocrystals

    Micro- to Macroscopic Observations of MnAlPO-5 Nanocrystal Growth in Ionic-Liquid Media

    No full text
    International audienceMicro-and macroscopic studies of nucleation and growth processes of MnAlPO-5 nanosized crystals under ionothermal synthesis conditions are reported herein. The samples treated at 150 degrees C were extracted from the reaction mixture at various stages of crystallization, and characterized by XRD; SEM; thermogravimetric analysis (TGA); (31)P and (27)Al solid-state magic angle spinning (MAS) NMR, Raman, UV/Vis, and X-ray fluorescence spectroscopy (XRF). The starting raw materials (alumina, manganese, and phosphorous) were dissolved completely in the ionic liquid and transformed into an amorphous solid after 5 h of ionothermal treatment. This amorphous solid then undergoes structural changes over the following 525 h, which result in an intermediate phase that consists of octahedral Al species linked to the manganese and phosphate species. The first MnAlPO-5 nuclei on the surface of the intermediate can be observed after 50 h ionoheating. These nuclei further grow, as the surface of the intermediate is in full contact with the ionic liquid, to give crystalline MnAlPO-5 nanoparticles with a mean diameter of 80 nm. The crystals become fully detached from the intermediate and are then liberated as discrete particles after 90 h heating. The transformation process from amorphous to intermediate and then to the crystalline MnAlPO-5 nanoparticles shows that nucleation starts at the solid-liquid interface and continues through surface-to-core reversed-growth until the entire amorphous solid is transformed into discrete nanocrystals

    Micro- to Macroscopic Observations of MnAlPO-5 Nanocrystal Growth in Ionic-Liquid Media

    No full text
    International audienceMicro-and macroscopic studies of nucleation and growth processes of MnAlPO-5 nanosized crystals under ionothermal synthesis conditions are reported herein. The samples treated at 150 degrees C were extracted from the reaction mixture at various stages of crystallization, and characterized by XRD; SEM; thermogravimetric analysis (TGA); (31)P and (27)Al solid-state magic angle spinning (MAS) NMR, Raman, UV/Vis, and X-ray fluorescence spectroscopy (XRF). The starting raw materials (alumina, manganese, and phosphorous) were dissolved completely in the ionic liquid and transformed into an amorphous solid after 5 h of ionothermal treatment. This amorphous solid then undergoes structural changes over the following 525 h, which result in an intermediate phase that consists of octahedral Al species linked to the manganese and phosphate species. The first MnAlPO-5 nuclei on the surface of the intermediate can be observed after 50 h ionoheating. These nuclei further grow, as the surface of the intermediate is in full contact with the ionic liquid, to give crystalline MnAlPO-5 nanoparticles with a mean diameter of 80 nm. The crystals become fully detached from the intermediate and are then liberated as discrete particles after 90 h heating. The transformation process from amorphous to intermediate and then to the crystalline MnAlPO-5 nanoparticles shows that nucleation starts at the solid-liquid interface and continues through surface-to-core reversed-growth until the entire amorphous solid is transformed into discrete nanocrystals
    corecore