4 research outputs found

    Application of Landsat-8, Sentinel-2, ASTER and Worldview-3 spectral imagery for exploration of carbonate-hosted Pb-Zn deposits in the Central Iranian Terrane (CIT)

    Get PDF
    © 2020 by the authors. The exploration of carbonate-hosted Pb-Zn mineralization is challenging due to the complex structural-geological settings and costly using geophysical and geochemical techniques. Hydrothermal alteration minerals and structural features are typically associated with this type of mineralization. Application of multi-sensor remote sensing satellite imagery as a fast and inexpensive tool for mapping alteration zones and lithological units associated with carbonate-hosted Pb-Zn deposits is worthwhile. Multiple sources of spectral data derived fromdifferent remote sensing sensors can be utilized for detailed mapping a variety of hydrothermal alteration minerals in the visible near infrared (VNIR) and the shortwave infrared (SWIR) regions. In this research, Landsat-8, Sentinel-2, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and WorldView-3 (WV-3) satellite remote sensing sensors were used for prospecting Zn-Pb mineralization in the central part of the Kashmar-Kerman Tectonic Zone (KKTZ), the Central Iranian Terrane (CIT). The KKTZ has high potential for hosting Pb-Zn mineralization due to its specific geodynamic conditions (folded and thrust belt) and the occurrence of large carbonate platforms. For the processing of the satellite remote sensing datasets, band ratios and principal component analysis (PCA) techniques were adopted and implemented. Fuzzy logic modeling was applied to integrate the thematic layers produced by image processing techniques for generating mineral prospectivity maps of the study area. The spatial distribution of iron oxide/hydroxides, hydroxyl-bearing and carbonate minerals and dolomite were mapped using specialized band ratios and analyzing eigenvector loadings of the PC images. Subsequently, mineral prospectivity maps of the study area were generated by fusing the selected PC thematic layers using fuzzy logic modeling. The most favorable/prospective zones for hydrothermal ore mineralizations and carbonate-hosted Pb-Zn mineralization in the study region were particularly mapped and indicated. Confusion matrix, field reconnaissance and laboratory analysis were carried out to verify the occurrence of alteration zones and highly prospective locations of carbonate-hosted Pb-Zn mineralization in the study area. Results indicate that the spectral data derived from multi-sensor remote sensing satellite datasets can be broadly used for generating remote sensing-based prospectivity maps for exploration of carbonate-hosted Pb-Zn mineralization in many metallogenic provinces around the world

    Identification of phyllosilicates in the antarctic environment using aster satellite data: Case study from the mesa range, campbell and priestley glaciers, northern Victoria land

    Get PDF
    In Antarctica, spectral mapping of altered minerals is very challenging due to the remote-ness and inaccessibility of poorly exposed outcrops. This investigation evaluates the capability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite remote sensing imagery for mapping and discrimination of phyllosilicate mineral groups in the Antarctic environment of northern Victoria Land. The Mixture-Tuned Matched-Filtering (MTMF) and Constrained Energy Minimization (CEM) algorithms were used to detect the sub-pixel abundance of Al-rich, Fe -rich, Fe -rich and Mg-rich phyllosilicates using the visible and near-infrared (VNIR), short-wave infrared (SWIR) and thermal-infrared (TIR) bands of ASTER. Results indicate that Al-rich phyllosilicates are strongly detected in the exposed outcrops of the Granite Harbour granitoids, Wilson Metamorphic Complex and the Beacon Supergroup. The presence of the smectite mineral group derived from the Jurassic basaltic rocks (Ferrar Dolerite and Kirkpatrick Basalts) by weathering and decomposition processes implicates Fe -rich and Fe -rich phyllosilicates. Biotite (Fe -rich phyllosilicate) is detected associated with the Granite Harbour granitoids, Wilson Metamorphic Complex and Melbourne Volcanics. Mg-rich phyllosilicates are mostly mapped in the scree, glacial drift, moraine and crevasse fields derived from weathering and decomposition of the Kirkpatrick Basalt and Ferrar Dolerite. Chlorite (Mg-rich phyllosilicate) was generally mapped in the exposures of Granite Harbour granodiorite and granite and partially identified in the Ferrar Dolerite, the Kirkpatrick Basalt, the Priestley Formation and Priestley Schist and the scree, glacial drift and moraine. Statistical results indicate that Al-rich phyllosilicates class pixels are strongly discriminated, while the pixels at-tributed to Fe -rich class, Fe -rich and Mg-rich phyllosilicates classes contain some spectral mixing due to their subtle spectral differences in the VNIR+SWIR bands of ASTER. Results derived from TIR bands of ASTER show that a high level of confusion is associated with mafic phyllosilicates pixels (Fe -rich, Fe -rich and Mg-rich classes), whereas felsic phyllosilicates (Al-rich class) pixels are well mapped. Ground truth with detailed geological data, petrographic study and X-ray diffraction (XRD) analysis verified the remote sensing results. Consequently, ASTER image-map of phyllosilicate minerals is generated for the Mesa Range, Campbell and Priestley Glaciers, northern Victoria Land of Antarctica. 3+ 2+ 3+ 2+ 2+ 3+ 2+ 3+ 2

    ASTER and WorldView-3 satellite data for mapping lithology and alteration minerals associated with Pb-Zn mineralization

    No full text
    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and WorldView-3 (WV-3) satellite remote sensing data were used for mapping lithological units and hydrothermal alteration zones associated with Pb-Zn mineralization in the Kerman–Kashmar Tectonic Zone (KKTZ), Iran. The visible near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) bands of ASTER were used to map iron oxide/hydroxides, Al-OH minerals, Fe,Mg-OH minerals, quartz and carbonate minerals. The VNIR bands of WV-3 were used to discriminate Fe3+ and Fe2+ absorption intensities. Selective Principal Component analysis (SPCA), Spectral Angle Mapper (SAM), Linear Spectral Unmixing (LSU) and Automatic Lineament Extraction techniques were implemented. Lithological units were discriminated based on Al/Fe-OH, Fe2+/Fe3+ and Mg-Fe-OH/CO3 absorption properties. The spatial distribution of hematite, goethite, jarosite, gypsum, calcite, dolomite, kaolinite and muscovite were comprehensively detected. Some prospective zones were identified in the intersection of N-S, NW-SE and NE-SW trending fault systems, gossan, argillic/phyllic and dolomitic units
    corecore