19 research outputs found

    Регорафениб: новый препарат для лечения метастатического колоректального рака

    Get PDF
    Metastatic colorectal cancer is a serious medical and social problem. Development of new treatment approaches, drugs, especially targeted drugs, leads to the instantly increasing of survival in this disease. Regorafenib is recently approved for use in advanced metastatic colorectal cancer. This drug significantly improves treatment results with acceptable safety profile. In this review results of large controlled studies of regorafenib in colorectal cancer are discussed. Data on overall survival, progression-free survival, objective response rate and safety profile are consecutively evaluated.Метастатический колоректальный рак – огромная, социально значимая проблема здравоохранения. Разработка новых подходов к лечению, внедрение новейших препаратов, особенно таргетного действия позволяет увеличить продолжительность жизни таких пациентов. Недавно появившийся в арсенале онкологов препарат регорафениб достоверно улучшает результаты лечения в этой сложной группе больных, обладая приемлемым профилем токсичности. В статье представлены данные крупных исследований, проведенных для изучения свойств и эффектов регорафениба. Всесторонне рассмотрены полученные результаты по изменению показателей общей выживаемости, выживаемости без прогрессирования, объективного ответа, спектр нежелательных явлений

    Clinical validation of the novel CLIA-CA-62 assay efficacy for early-stage breast cancer detection

    Get PDF
    BackgroundWithout organized screening programs up to 60-70% of breast cancers are diagnosed at advanced stages that have significantly lower five-year survival rate and poorer outcomes, which is a serious global public health problem. The purpose of the blind clinical study was the assessment of the novel in-vitro diagnostic chemiluminescent CLIA-CA-62 assay for early-stage breast cancer detection.MethodsBlind serum samples of 196 BC patients with known TNM staging, 85% with DCIS, Stage I & IIA, and 73 healthy control subjects were analyzed with the CLIA-CA-62 and CA 15-3 ELISA assays. Results were also compared to the pathology findings and to published data from mammography, MRI, ultrasound, and multi-cancer early detection test (MCED).ResultsThe CLIA-CA-62 overall sensitivity for BC was 92% (100% for DCIS) at 93% specificity and it decreased in invasive stages (Stage I=97%, Stage II=85% and Stage III=83%). For the CA 15-3 assay sensitivity was 27-46% at 80% specificity. Sensitivity for mammography was 63-80% at 60% specificity, depending on the stage and the parenchymal density.ConclusionThese results demonstrate that CLIA-CA-62 immunoassay could prove useful as a supplement to current mammography screening and other imaging methods, thus increasing the diagnostic sensitivity in DCIS and Stage I breast cancer detection

    Combination of immune checkpoint inhibitors with radiation therapy in cancer: A hammer breaking the wall of resistance

    Get PDF
    Immuno-oncology is an emerging field in the treatment of oncological diseases, that is based on recruitment of the host immune system to attack the tumor. Radiation exposure may help to unlock the potential of the immune activating agents by enhancing the antigen release and presentation, attraction of immunocompetent cells to the inflammation site, and eliminating the tumor cells by phagocytosis, thereby leading to an overall enhancement of the immune response. Numerous preclinical studies in mouse models of glioma, murine melanoma, extracranial cancer, or colorectal cancer have contributed to determination of the optimal radiotherapy fractionation, as well as the radio- and immunotherapy sequencing strategies for maximizing the antitumor activity of the treatment regimen. At the same time, efficacy of combined radio- and immunotherapy has been actively investigated in clinical trials of metastatic melanoma, non-small-cell lung cancer and renal cell carcinoma. The present review summarizes the current advancements and challenges related to the aforementioned treatment approach

    Clinically relevant fusion oncogenes: detection and practical implications

    No full text
    Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods

    Detection of Urothelial Bladder Cancer Based on Urine and Tissue Telomerase Activity Measured by Novel RT-TRAP-2PCR Method

    No full text
    Purpose: To assess the diagnostic performance of urine telomerase activity (TA) in detecting bladder cancer (BCa) using the modified Telomeric Repeat Amplification Protocol (TRAP) and the Real Time Telomeric Repeat Amplification Protocol with double Polymerase Chain Reaction (RT-TRAP-2PCR). Methods: In this case-control study, matching urine (in the pre- and post-surgical period) and tissue samples from 68 patients with BCa were assessed for TA. As a control, 45 urine samples were examined from non-BCa patients. TA levels were measured using TRAP and RT-TRAP-2 PCR methods. Results: Preoperative urinary TA was elevated in 64 (94.1%) of the 68 BCa patients. Urine TA was undetectable in 44 control patients, while TA was detected in one patient with histologically verified cystitis. Sensitivity for BCa detection of 94.1% and specificity of 97.8% were observed for urinary TA, while tissue TA had 100% sensitivity and 97.8% specificity. Both urine and tissue TA levels were not significantly higher in patients with muscle-invasive disease compared to those with non-muscle invasive BCa (p > 0.05). Urine and tissue TA levels were not associated with higher tumor grade, stage, and number of tumors (p > 0.05). However, the association was found between higher urinary and tissue TA levels with tumor size ≥ 3 cm (p = 0.02 and p = 0.01, respectively). During the first postoperative year, 17 BCa patients experienced disease recurrence, and urinary TA was present in 14 (82.4%) of these patients. The sensitivity and specificity of urinary TA levels for BCa recurrence in patients with non-muscle invasive bladder cancer (NMIBC) during follow-up were 82% and 94.4%, respectively. Conclusions: This pilot study demonstrates a high diagnostic performance of urinary and tissue TA levels measured by a new RT-TRAP-2PCR method for detecting and monitoring BCa. Additionally, the association was found between higher urinary and tissue TA levels with tumor size ≥ 3 cm; however, higher TA levels failed for significant correlation with advanced tumor stage and grade. Our study could serve as a benchmark for the evaluation of novel biomarkers using the RT-TRAP-2PCR method

    Detection of Urothelial Bladder Cancer Based on Urine and Tissue Telomerase Activity Measured by Novel RT-TRAP-2PCR Method

    No full text
    Purpose: To assess the diagnostic performance of urine telomerase activity (TA) in detecting bladder cancer (BCa) using the modified Telomeric Repeat Amplification Protocol (TRAP) and the Real Time Telomeric Repeat Amplification Protocol with double Polymerase Chain Reaction (RT-TRAP-2PCR). Methods: In this case-control study, matching urine (in the pre- and post-surgical period) and tissue samples from 68 patients with BCa were assessed for TA. As a control, 45 urine samples were examined from non-BCa patients. TA levels were measured using TRAP and RT-TRAP-2 PCR methods. Results: Preoperative urinary TA was elevated in 64 (94.1%) of the 68 BCa patients. Urine TA was undetectable in 44 control patients, while TA was detected in one patient with histologically verified cystitis. Sensitivity for BCa detection of 94.1% and specificity of 97.8% were observed for urinary TA, while tissue TA had 100% sensitivity and 97.8% specificity. Both urine and tissue TA levels were not significantly higher in patients with muscle-invasive disease compared to those with non-muscle invasive BCa (p > 0.05). Urine and tissue TA levels were not associated with higher tumor grade, stage, and number of tumors (p > 0.05). However, the association was found between higher urinary and tissue TA levels with tumor size ≥ 3 cm (p = 0.02 and p = 0.01, respectively). During the first postoperative year, 17 BCa patients experienced disease recurrence, and urinary TA was present in 14 (82.4%) of these patients. The sensitivity and specificity of urinary TA levels for BCa recurrence in patients with non-muscle invasive bladder cancer (NMIBC) during follow-up were 82% and 94.4%, respectively. Conclusions: This pilot study demonstrates a high diagnostic performance of urinary and tissue TA levels measured by a new RT-TRAP-2PCR method for detecting and monitoring BCa. Additionally, the association was found between higher urinary and tissue TA levels with tumor size ≥ 3 cm; however, higher TA levels failed for significant correlation with advanced tumor stage and grade. Our study could serve as a benchmark for the evaluation of novel biomarkers using the RT-TRAP-2PCR method

    Algorithmically Reconstructed Molecular Pathways as the New Generation of Prognostic Molecular Biomarkers in Human Solid Cancers

    No full text
    Individual gene expression and molecular pathway activation profiles were shown to be effective biomarkers in many cancers. Here, we used the human interactome model to algorithmically build 7470 molecular pathways centered around individual gene products. We assessed their associations with tumor type and survival in comparison with the previous generation of molecular pathway biomarkers (3022 “classical” pathways) and with the RNA transcripts or proteomic profiles of individual genes, for 8141 and 1117 samples, respectively. For all analytes in RNA and proteomic data, respectively, we found a total of 7441 and 7343 potential biomarker associations for gene-centric pathways, 3020 and 2950 for classical pathways, and 24,349 and 6742 for individual genes. Overall, the percentage of RNA biomarkers was statistically significantly higher for both types of pathways than for individual genes (p < 0.05). In turn, both types of pathways showed comparable performance. The percentage of cancer-type-specific biomarkers was comparable between proteomic and transcriptomic levels, but the proportion of survival biomarkers was dramatically lower for proteomic data. Thus, we conclude that pathway activation level is the advanced type of biomarker for RNA and proteomic data, and momentary algorithmic computer building of pathways is a new credible alternative to time-consuming hypothesis-driven manual pathway curation and reconstruction

    Personalized prescription of tyrosine kinase inhibitors in unresectable metastatic cholangiocarcinoma

    No full text
    Abstract Background Cholangiocarcinoma is an aggressive tumor with poor prognosis. Most of the cases are not available for surgery at the stage of the diagnosis and the best clinical practice chemotherapy results in about 12-month median survival. Several tyrosine kinase inhibitors (TKIs) are currently under investigation as an alternative treatment option for cholangiocarcinoma. Thus, the report of personalized selection of effective inhibitor and case outcome are of clinical interest. Case presentation Here we report a case of aggressive metastatic cholangiocarcinoma (MCC) in 72-year-old man, sequentially treated with two targeted chemotherapies. Initially disease quickly progressed during best clinical practice care (gemcitabine in combination with cisplatin or capecitabine), which was accompanied by significant decrease of life quality. Monotherapy with TKI sorafenib was prescribed to the patient, which resulted in stabilization of tumor growth and elimination of pain. The choice of the inhibitor was made based on high-throughput screening of gene expression in the patient’s tumor biopsy, utilized by Oncobox platform to build a personalized rating of potentially effective target therapies. However, time to progression after start of sorafenib administration did not exceed 6 months and the regimen was changed to monotherapy with Pazopanib, another TKI predicted to be effective for this patient according to the same molecular test. It resulted in disease progression according to RECIST with simultaneous elimination of sorafenib side effects such as rash and hand-foot syndrome. After 2 years from the diagnosis of MCC the patient was alive and physically active, which is substantially longer than median survival for standard therapy. Conclusion This case evidences that sequential personalized prescription of different TKIs may show promising efficacy in terms of survival and quality of life in MCC

    Cytokine Profile in Lung Cancer Patients: Anti-Tumor and Oncogenic Cytokines

    No full text
    Lung cancer is currently the second leading cause of cancer death worldwide. In recent years, checkpoint inhibitor immunotherapy (ICI) has emerged as a new treatment. A better understanding of the tumor microenvironment (TMJ) or the immune system surrounding the tumor is needed. Cytokines are small proteins that carry messages between cells and are known to play an important role in the body’s response to inflammation and infection. Cytokines are important for immunity in lung cancer. They promote tumor growth (oncogenic cytokines) or inhibit tumor growth (anti-tumour cytokines) by controlling signaling pathways for growth, proliferation, metastasis, and apoptosis. The immune system relies heavily on cytokines. They can also be produced in the laboratory for therapeutic use. Cytokine therapy helps the immune system to stop the growth or kill cancer cells. Interleukins and interferons are the two types of cytokines used to treat cancer. This article begins by addressing the role of the TMJ and its components in lung cancer. This review also highlights the functions of various cytokines such as interleukins (IL), transforming growth factor (TGF), and tumor necrosis factor (TNF)

    A single-lead ECG based cardiotoxicity detection in patients on polychemotherapy

    No full text
    Background: Anti-cancer treatment can be fraught with cardiovascular complications, which is the most common cause of death among oncological survivors. Without appropriate cardiomonitoring during anti-cancer treatment, it becomes challenging to detect early signs of cardiovascular complications. In order to achieve higher survival rates, it is necessary to monitor oncological patients outpatiently after anti-cancer treatment administration. In this regard, we aim to evaluate the efficacy of single-lead ECG remote monitoring to detect cardiotoxicity in cancer patients with minimal cardiovascular diseases after the first cycle of polychemotherapy. Materials and methods: The study included patients 162 patients over 18 years old with first diagnosed different types of solid tumors, planed for adjuvant (within 8 weeks after surgery) or neoadjuvant polychemotherapy. All patients were monitored, outpatiently, during 14–21 days (depending on the regimen of polychemotherapy) after polychemotherapy administration using single-lead ECG. Results: QTc > 500 mc prolongation was detected in 8 patients (6.6 %), first-diagnosed arial fibrillation was detected in 11 patients (9 %) in period after chemotherapy administration. Moreover, left ventricular diastolic dysfunction using single-lead ECG after polychemotherapy was detected in 49 (40.1 %) patients with sensitivity 80 %, specificity 95 %, AUC 0.88 (95 % CI, 0.82–0.93). Conclusions: The side effects of cancer treatment may cause life-threatening risks. Early identification of cardiotoxicity plays a vital role in the solution of this problem. Using portable devices to detect early cardiotoxicity is a simple, convenient and affordable screening method, that can be used for promptly observation of patients
    corecore