99 research outputs found

    Molecular mechanisms of the metal oxide sol-gel process and their application in approaches to thermodynamically challenging complex oxide materials

    Get PDF
    This review presents a brief overview of recent insights into general reaction pathways in sol-gel synthesis of metal oxides. Metal-based sol-gel precursors display kinetically unhindered reactivity, combining high reaction speed with reversibility on a molecular level. The process producing metal oxide sols can thus be described as nucleation of an oxide phase with growth option efficiently precluded by extremely low solubility. The emerging nuclei are essentially Polyoxometalate (POM) species, with sizes in the colloid range starting from about 2 nm. They are stabilized in solution by colloid forces (charge interactions, hydrogen bonding, van der Waals forces), defined by the nature and arrangement of species on their surface, which permits them to be denoted as Micelles Templated by Self-Assembly of Ligands (MTSALs). The sol-gel transition occurs on aggregation of particles resulting in percolation. Exploiting this mechanism, it is possible to produce materials with controlled porosity, biocompatibility, and even to access thermodynamically challenging phases that cannot be produced by conventional synthetic techniques

    Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation

    Get PDF
    The synthesis of core-shell magnetic mesoporous nanoparticles (MMSNs) through a phase transfer process is usually performed at the 100-250 mg scale. At the gram scale, nanoparticles without cores or with multicore systems are observed. Iron oxide core nanoparticles (IO) were synthesized through a thermal decomposition procedure of alpha-FeO(OH) in oleic acid. A phase transfer from chloroform to water was then performed in order to wrap the IO nanoparticles with a mesoporous silica shell through the sol-gel procedure. MMSNs were then functionalized with DTPA (diethylenetriaminepentacetic acid) and used for the separation of metal ions. Their toxicity was evaluated. The phase transfer procedure was crucial to obtaining MMSNs on a large scale. Three synthesis parameters were rigorously controlled: temperature, time and glassware. The homogeneous dispersion of MMSNs on the gram scale was successfully obtained. After functionalization with DTPA, the MMSN-DTPAs were shown to have a strong affinity for Ni ions. Furthermore, toxicity was evaluated in cells, zebrafish and seahorse cell metabolic assays, and the nanoparticles were found to be nontoxic. We developed a method of preparing MMSNs at the gram scale. After functionalization with DTPA, the nanoparticles were efficient in metal ion removal and separation; furthermore, no toxicity was noticed up to 125 mu g mL-1 in zebrafish

    Novel solvothermal approach to hydrophilic nanoparticles of late transition elements and its evaluation by nanoparticle tracking analysis

    Get PDF
    Solvothermal treatment of late transition metal acetylacetonates in a novel medium composed either of pure acetophenone or acetophenone mixtures with amino alcohols offers a general approach to uniform hydrophilic metal nanoparticles with high crystallinity and low degree of aggregation. Both pure metal and mixed-metal particles can be accesses by this approach. The produced materials have been characterized by SEM-EDS, TEM, FTIR in the solid state and by Nanoparticle Tracking Analysis in solutions. The chemical mechanisms of the reactions producing nanoparticles has been followed by NMR. Carrying out the process in pure acetophenone produces palladium metal, copper metal with minor impurity of Cu2O, and NiO. The synthesis starting from the mixtures of Pd and Ni acetylacetonates with up to 20 mol% of Pd, renders in minor yield the palladium-based metal alloy along with nickel oxide as the major phase. Even the synthesis starting from a mixed solution of Cu(acac)2 and Ni(acac)2 produces oxides as major products. The situation is improved when aminoalcohols such as 2-aminoethanol or 2-dimethylamino propanol are added to the synthesis medium. The particles in this case contain metallic elements and pairs of individual metals (not metal alloys) when produced from mixed precursor solutions

    Self-Assembly of Asymmetrically Functionalized Titania Nanoparticles into Nanoshells

    Get PDF
    Titania (anatase) nanoparticles were anisotropically functionalized in water-toluene Pickering emulsions to self-assemble into nanoshells with diameters from 500 nm to 3 mu m as candidates for encapsulation of drugs and other compounds. The water-phase contained a hydrophilic ligand, glucose-6-phosphate, while the toluene-phase contained a hydrophobic ligand, n-dodecylphosphonic acid. The addition of a dilute sodium alginate suspension that provided electrostatic charge was essential for the self-limited assembly of the nanoshells. The self-assembled spheres were characterized by scanning electron microscopy, elemental mapping, and atomic force microscopy. Drug release studies using tetracycline suggest a rapid release dominated by surface desorption

    Titanium phosphonate oxo-alkoxide "clusters": solution stability and facile hydrolytic transformation into nano titania

    Get PDF
    Titanium (oxo-) alkoxide phosphonate complexes were synthesized using different titanium precursors and tert-butylphosphonic acid (tBPA) as molecular models for interaction between phosphonates and titania surfaces and to investigate the solution stability of these species. Reflux of titanium(IV) ethoxide ortitanium(IV)(diisopropoxide)bis(2,4-pentadionate) withtert-butylphosphonic acid in toluene–ethanolmixture or acetone yielded seven titanium alkoxide phosphonate complexes; [Ti5(m3-O)(m2-O)-(m-HOEt)2(m-OEt)3(m2-OEt)(m3-tBPA)3(m3-HtBPA)(m2-tBPA)2(m2-HtBPA)]3EtOH,1,[Ti4O(mOEt)5(m2OEt)7(m3tBPA)],2,[Ti4(m2O)2(mOEt)2(mHOEt)2(m2tPBA)2(m2HtPBA)6]3EtOH,1, [Ti4O(m-OEt)5(m2-OEt)7-(m3-tBPA)],2,[Ti4(m2-O)2(m-OEt)2(m-HOEt)2(m2-tPBA)2(m2-HtPBA)6]4EtOH,3,[Ti4(m2-O)2(m-OEt)2(m-HOEt)2-(m2-tPBA)2(m2-HtPBA)6]$2EtOH,4,[Ti6(m2-O)(m3-O)2(m2-OEt)5(m-OEt)6(m3-tBPA)3(m3-HtBPA)],5,[Ti4(m-iOPr)4(acac)4(m2-tBPA)4],6 and [Ti5(m4-O)(m2-O)3(m2-OEt)4(m-OEt)6(m-HOEt)(m3-tBPA)]2,7. The binding mode of tBPAtothetitanium oxo-core were either double or triple bridging or a combination of the two. No monodentate or chelating coordination was observed.31P NMR spectrometry of dissolved single crystals indicates that 1 and 5 retain their solid-state structures in solution, the latter even on moderate heating, while 6 and 7 dissolved into several other forms. The complexes were found to be sensitive towards hydrolysis, proceeding in a topotacticfashion with densification of the material into plates and lamellae resulting finally in “core–shell”nanoparticles with a crystalline core (anatase) and an amorphous outer shell upon contact with water at room temperature as observed by HRTEM and AFM analyses.31P NMR data supported degradation after addition of water to solutions of the complexes. Hydrolysis under different conditions affords complex oxide structures of different morphologies

    Natural Silicates Encapsulated Enzymes as Green Biocatalysts for Degradation of Pharmaceuticals

    Get PDF
    Biocatalytic degradation with the use of enzymes has gained great attention in the past few years due to its advantages of high efficiency and environmental friendliness. Novel, cost-effective, and green nanoadsorbents were produced in this study, using natural silicates as an enzyme host matrix for core-shell immobilization technique. With the natural silicate as a core and silica layer as a shell, it was possible to encapsulate two different enzymes: horseradish peroxidase (HRP) and laccase, for removal and degradation of three pharmaceuticals: diclofenac (DFC), carbamazepine (CBZ), and paracetamol (PC). The biocatalysts demonstrated high oxidation rates for the selected pollutants. In particular HRP immobilized fly ash and perlite degraded DFC and PC completely during 3 days of interaction and also showed high degradation rates for CBZ. Immobilized laccase was successful in PC degradation, where up to 70-80% degradation of the compounds with aromatic rings was reported by NMR measurements for a high drug concentration of 10 mu g/mL. The immobilization method played a significant role in this process by providing stability and protection for the enzymes over 3 weeks. Furthermore, the enzymes acted differently in the three chosen supports due to their complex chemical composition, which could have an effect on the overall enzyme activity

    In situ Functionalized Mesoporous Silicas for Sustainable Remediation Strategies in Removal of Inorganic Pollutants from Contaminated Environmental Water

    Get PDF
    Low-cost mesoporous silicas of the SBA-15 family were prepared, aimed for removal of a broad spectrum of both cationic and anionic forms of hazardous metal pollutants (Cr(III, VI), Mn(II, VII), Pb(II), Cd(II), and Cu(II)) from environmental water. Series of mono-and bifunctional materials with immobilized ethylenediaminetriacetic acid (EDTA), primary amine (NH2), and quaternary ammonium (QAS) groups were prepared in a cost-efficient one-step synthesis using two silica sources, low-cost sodium metasilicate (Na2SiO3 9H(2)O) and the conventional source-tetraethylorthosilicate (TEOS). The functionalized SBA-15 samples obtained from both silica sources were highly ordered, as evidenced by TEM and SAXS data. All obtained materials were mesoporous with high surface area values of up to 745 m(2)/g, pore volumes from 0.99 to 1.44 cm(3)/g, and narrow pore distributions near 7 nm. The adsorption affinity of the EDTA-functionalized samples followed the common order Pb(II)> Cd(II)> Cu(II)> Cr(III)> Mn(II), which could be explained based on the Pearson theory. The highest adsorption capacities were observed for samples functionalized by EDTA groups using TEOS for synthesis (TEOS/EDTA): 195.6 mg/g for Pb(II), 111.2 mg/g for Cd(II), 58.7 mg/ g for Cu(II), 57.7 mg/g for Cr(III), and 49.4 mg/g for Mn(II). Moreover, organic matter (humic acid up to 10 mg/L) and inorganic (Na(I), K(I), Mg(II), Ca(II), etc) macrocomponents present in environmental water had almost negligible effect on the removal of these cations. The NaSi/EDTA/NH2 sample revealed a better selectivity compared to the NaSi/NH2 sample towards such species as Cr(III), Mn(II), Cd(II), and Cu(II). The chromate-ions uptake at pH 7.5 by the TEOS/QAS sample turned practically unaffected by the presence of doubly charged anions (CO32-, SO42-). The content of functional groups on the surface of MS decreased only slightly (similar to 1-5%) after several regeneration cycles. The complete desorption of all heavy metal ions can be achieved using 1 mol/L EDTA solution. Reusability tests demonstrated the complete stability of the adsorbent for at least five to six consecutive adsorption/ desorption cycles with no decrease in its adsorption characteristics compared to those obtained by 0.05 mol/L HNO3 treatments. The synthesized mesoporous materials were evaluated for removal of the heavy metal ions from drinking and different natural water samples, proving their potential as sustainable, effective, and cost-efficient adsorbents

    Factors influencing stoichiometry and stability of polyoxometalate - peptide complexes

    Get PDF
    In the pursuit of understanding the factors guiding interactions between polyoxometalates (POMs) and biomolecules, several complexes between Keggin phosphomolybdate and diglycine have been produced at different acidity and salinity conditions, leading to difference in stoichiometry and in crystal structure. Principal factors determining how the POM and dipeptide interact appear to be pH, ionic strength of the medium, and the molar ratio of POM to peptide. An important effect turned out to be even the structure-directing role of the sodium cations coordinating carbonyl functions of the peptide bond. Given the interest in applying POMs in biological systems, these factors are highly relevant to consider. In the view of recent interest in using POMs as nano catalysts in peptide hydrolysis also the potential Keggin POM transformation in phosphate buffered saline medium was investigated leading to insight that nanoparticles of zirconium phosphate (ZrP) can be actual catalysts for breakdown of the peptide bond

    Tailoring a bio-based adsorbent for sequestration of late transition and rare earth elements

    Get PDF
    The demand for new renewable energy sources, improved energy storage and exhaust-free transportation requires the use of large quantities of rare earth (REE) and late transition (LTM, group 8-12) elements. In order to achieve sustainability in their use, an efficient green recycling technology is required. Here, an approach, a synthetic route and an evaluation of the designed bio-based material are reported. Cotton-derived nano cellulose particles were functionalized with a polyamino ligand, tris(2-aminoethyl) amine (TAEA), achieving ligand content of up to ca. 0.8 mmol g(-1). The morphology and structure of the produced adsorbent were revealed by PXRD, SEM-EDS, AFM and FTIR techniques. The adsorption capacity and kinetics of REE and LTM were investigated by conductometric photometric titrations, revealing quick uptake, high adsorption capacity and pronounced selectivity for LTM compared to REE. Molecular insights into the mode of action of the adsorbent were obtained via the investigation of the molecular structure of the Ni(ii)-TAEA complex by an X-ray single crystal study. The bio-based adsorbent nanomaterial demonstrated in this work opens up a perspective for tailoring specific adsorbents in the sequestration of REE and LTM for their sustainable recycling

    Site-specific recognition of SARS-CoV-2 nsp1 protein with a tailored titanium dioxide nanoparticle - elucidation of the complex structure using NMR data and theoretical calculation

    Get PDF
    The ongoing world-wide Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) pandemic shows the need for new potential sensing and therapeutic means against the CoV viruses. The SARS-CoV-2 nsp1 protein is important, both for replication and pathogenesis, making it an attractive target for intervention. In this study we investigated the interaction of this protein with two types of titania nanoparticles by NMR and discovered that while lactate capped particles essentially did not interact with the protein chain, the aminoalcohol-capped ones showed strong complexation with a distinct part of an ordered alpha-helix fragment. The structure of the forming complex was elucidated based on NMR data and theoretical calculation. To the best of our knowledge, this is the first time that a tailored titanium oxide nanoparticle was shown to interact specifically with a unique site of the full-length SARS-CoV-2 nsp1 protein, possibly interfering with its functionality
    corecore