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Abstract
This review presents a brief overview of recent insights into general reaction pathways in sol-gel synthesis of metal oxides.
Metal-based sol-gel precursors display kinetically unhindered reactivity, combining high reaction speed with reversibility on
a molecular level. The process producing metal oxide sols can thus be described as nucleation of an oxide phase with growth
option efficiently precluded by extremely low solubility. The emerging nuclei are essentially Polyoxometalate (POM)
species, with sizes in the colloid range starting from about 2 nm. They are stabilized in solution by colloid forces (charge
interactions, hydrogen bonding, van der Waals forces), defined by the nature and arrangement of species on their surface,
which permits them to be denoted as Micelles Templated by Self-Assembly of Ligands (MTSALs). The sol-gel transition
occurs on aggregation of particles resulting in percolation. Exploiting this mechanism, it is possible to produce materials
with controlled porosity, biocompatibility, and even to access thermodynamically challenging phases that cannot be
produced by conventional synthetic techniques.

Graphical Abstract
Metal oxide Sol-Gel can be described as nucleation of an oxide phase resulting from one-step coordination equilibrium in
solution, followed by aggregation without growth.
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Highlights
● Metal alkoxides are strong Brönsted and Lewis bases, undergoing hydrolysis via proton-assisted SN1 mechanism
● Hydrolysis and polycondensation are for metal alkoxides a single kinetic phenomenon, leading to nucleation of an oxide

phase
● The metal oxide nuclei are colloid particles 2–5 nm in size with Polyoxometalate structure—a well-ordered core in a shell

of ligands, permitting to describe them as Micelles Templated by Self-Assembly of ligands

1 Introduction

Sol-gel technology from its very first steps has attracted
the strong attention of materials chemists, due to its ver-
satility in approach to materials possessing rather varied
physical shape and morphology. Discovered originally for
silica [1], it received already early in its history a number
of spectacular applications involving metal oxides.
Among those, it is important to mention the approach to
mesoporous alumina developed in the dissertation of
Vyacheslav Tishchenko in 1898 [2] and the T-Star tech-
nology for antireflective coatings, involving thin TiO2

layers, invented by Alexander Smakula at Carl Zeiss in the
1930s [3].

Controlled synthesis of materials with different struc-
tural, morphological, and, not the least, chemical char-
acteristics, requires understanding of the nature of
processes, guiding their formation. The eagle-eye over-
view of Sol-Gel materials chemistry is given usually in the
way presented in Fig. 1, rooted, quite probably, in the
illustrative materials to the lectures of Alexander Smakula
at MIT in the 1950s. In this description, the precursor is a

metal alkoxide solution, transformed into what appears to
be uniform spherical particles in a colloid solution (sol).
The latter undergo further aggregation and densification to
yield different kinds of functional shapes and morpholo-
gies—uniform dense coatings by deposition on a sub-
strate, xerogels on air-drying, and, via further thermal
treatment, dense ceramics, uniform nanoparticles via
controlled precipitation, aerogels via solvent replacement,
wires by dragging a thread that is then subjected to
annealing, etc.

In the old courses in sol-gel technology, a common
comment on this graphic overview, when moving to
description of the chemical mechanisms, was: “Let’s look at
the reactions of a metal alkoxide, for example, silicon alk-
oxide”. This was apparently a very controversial move,
because silicon, as Inorganic Chemistry clearly states [4], is
not a metal, but a metalloid, i.e., a non-metal element with
low electronegativity, possessing dense simple substance
forms with semiconductor properties. It is, however, a good
starting point for discussion of Sol-Gel mechanisms, to
focus first on the molecular chemistry and reactions of
silicon derivatives.

Fig. 1 Overview of the Sol-Gel
approaches to different classes
of materials [https://en.w
ikipedia.org/wiki/Sol%E2%80%
93gel_process]
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2 Sol-gel chemistry of silica

The nature of element-oxygen bonding in the compounds of
silicon is predominantly covalent, rendering relatively slow
reaction rates for compounds involving these bonds, which,
in particular is responsible for weathering stability of poly-
meric silicates, feldspars and clays, in nature [5]. The silicon-
oxygen bond is weakly polar and displays a pronounced ester
character due to interaction of the filled p-orbitals of oxygen
atoms and vacant d-orbitals of the silicon ones, the pπ-dπ
donor-acceptor mechanism (see Fig. 2).

This mildly polar Si-O bonding is responsible for the
poor solubility of silicon alkoxides in water and their con-
siderable resistance to hydrolysis in the absence of catalysts.
It usually requires addition of a less polar solvent such as
alcohol or THF to ensure dissolution of silicon alkoxides.
Kinetic characteristics of the hydrolysis process for alkoxy-
silanes resemble those of the carboxylic esters: larger size of
the alkyl group is associated with a slower hydrolytic
transformation. The hydrolysis rate varies in the series:
R=Me > Et > nPr > iPr ≈ nBu [6].

The effects of acidic and basic catalysis of hydrolysis
have been explained in a very illustrative way in the works
of Brinker and Scherrer [7–9]. In the basic medium, the
reaction of hydrolysis proceeds according to the addition-
elimination mechanism often compared to the SN2 type
process (see Fig. 3a). As catalysts, either an alkali (usually
sodium) hydroxide or ammonia, or even ammonium fluor-
ide, can be used. The reaction is quite slow, being asso-
ciated with a need to increase the coordination number of
the silicon atom. It is worth noting that the product of
hydrolysis is a siloxide anion, a considerably bulkier and
weaker nucleophile compared to a hydroxide anion, which
hinders its further condensation.

In the acidic medium, the reaction of hydrolysis proceeds
much quicker because no increase in coordination number

is required in the SN1 reaction. The forming alcohol is a
good leaving group. The forming alkoxy-silicic acid has
pronounced acidic properties in the alcohol solution, which
promotes its further reaction with unhydrolyzed alkoxy-
silane species.

These well-established kinetic features led to important
observations concerning the possibility to control the
morphology and porosity of silica for cases when the
reactions are carried out in alcohol media with addition of
only small catalytic amounts of an acid or a base. For
acidic catalysis, the speed of condensation in such con-
ditions exceeds the speed of hydrolysis, resulting in wire-
like morphology with low degree of cross-linking (see
Fig. 4), while for basic catalysis the hydrolysis occurs
quicker and is followed by slower condensation, resulting
in highly cross-linked clusters (Fig. 4). The formation of
linear spaghetti-like chains under acidic catalysis can be
related to the lower electron donating effect of OSi groups
with respect to OEt. This means that the partially posi-
tively charged Si are more favored in the terminal posi-
tions of a chain (more OEt groups, a single OSi group), vs
the internal positions of the chain (2 OSi groups, 2 OEt
groups). Similarly, the partially negatively charged pen-
tacoordinated Si groups under basic catalysis are more
favored at the centers of the chains, producing ramifica-
tions, with respect to the terminal Si atoms. The con-
densation kinetics could be followed by 29Si NMR,
confirming this hypothesis for such systems [10].

It is very important to mention that in predominantly
aqueous medium in the presence of an excess of acid or
base, the processes occur in a very different way. In strong
acidic medium the hydrolysis is quick, resulting in suppo-
sedly partly protonated Si(OH)4 that undergoes rather slow
condensation according to in situ FTIR investigations [11].
This enables acidic conditions to be used very efficiently for
production of mesoporous silica. In this process the free
silicic acid slowly condenses around the surfactant micelles,
forming a 3D ordered hexagonal or cubic structure of pores.
In the strongly basic medium, the initially quick hydrolysis
and polycondensation result in formation of in-principle
nuclei of amorphous silica that then slowly grow, forming
nano and then macro size spherical particles—the so-called
Stöber process. The size of the resulting particles can be
tuned rather finely via choice of precursor concentration,
and basicity and salinity of the solution as factors influen-
cing the colloid stability of the growing particles (see Fig. 5)
as described originally by Iler [12]. Many recipes are
available, describing conditions offering rather uniform
particles with exact desired size (see, for example, [13]).
The Stöber particles can grow around seeding particles or
incorporate molecules present in solution. When they are
produced in strongly basic medium (pH > 10) they become
quite dense, excluding even microporosity that would be an

Fig. 2 Ester character of the Si-OR bond explained via atomic orbital
interactions (based on Encyclopedia Britannica explanation
[https://www.britannica.com/science/coordination-compound/Ligand-
field-and-molecular-orbital-theories])
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inherent property of polymeric particles. With a Stöber
silica layer with thickness of 20 nm and higher it is possible
to protect against dissolution and oxidation, for example, a

magnetic iron oxide even in contact with concentrated nitric
acid [14].

A special mention should be made regarding the effect on
silicon alkoxides, the alkoxy-silanes, produced by introduc-
tion of chelating ligands. In contrast to the derivatives of
aliphatic alcohols, the heteroleptic Si complexes with che-
lating ligands are highly humidity sensitive and hydrolyze
without need of catalysts on contact with water in solution or
from the atmosphere [15]. This is caused apparently by a
combination of several factors (see Fig. 6). Introduction of a
chelating ligand breaks the symmetry of bonding, decreasing
its multiplicity (the “ester” character), contributes to
increased charge distribution, which in turn renders the alk-
oxide oxygen more strongly negatively charged and thus
more basic. The acidity of water molecules then becomes
sufficient to protonate the alkoxide residue and cause its
hydrolytic removal. Applying biocompatible polyols such as,
for example, glycerol as chelating ligand, it is possible to
design fully biocompatible ways to synthesize porous silica
for use in separation of biomolecules [16, 17].

3 Structure, bonding and reactivity of metal
alkoxides

The chemical nature of metal alkoxides is drastically
different from that of alkoxy-silanes, the silicic acid esters.
Theoretical calculations, even for highly charged +5 and
+6 cations, reveal localization of occupied bonding
molecular orbitals essentially solely on oxygen atoms of
the alkoxide ligands [18, 19]. This means that these spe-
cies are built by simple electrostatic, i.e., ionic bonding,
associated in reactivity with quick and reversible ligand
exchange reactions. Formation of heterometallic species
for metal alkoxides has been broadly proved to be a result
of coordination equilibria in solutions as demonstrated by
reproducible solubility isotherms in complex systems
(Fig. 7) [20].

Fig. 3 Hydrolysis pathways for alkoxy-silanes: basic catalysis via addition-elimination mechanism often described as SN2 mechanism (a) and
acidic catalysis via proton-assisted SN1 mechanism, where the process starts with an electrophilic addition of the proton (b)

Fig. 4 Typical morphologies of polymeric gels produced in alcohol
media with lower content of the catalyst. Reproduced with permission
from [55]

Fig. 5 Influence of pH and salinity on formation of silica in pre-
dominantly aqueous medium. Reproduced with permission from [56]
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It is important to note that the molecular structures of
complex alkoxide species follow the Goldschmidt’s prin-
ciples of minimal radius ratios as principal factors deter-
mining their construction. Selecting a structure type for a
desired chemical composition enables new heterometallic
complexes to be constructed by compensating the charge
and coordination requirements of cations via choice of
ligands, providing the necessary number of donor atoms
and possessing the needed size (volume angle require-
ments), see Fig. 8 [21]. The same type of structure can be
built up, using cations with different charges by replacing
pairs of simple alkoxide ligands with a chelating ligand with
comparable angular size. For example, two ethoxide ligands
are equivalent to one acetylacetonate (acac) ligand and two
iso-propoxide ligands—to a 2,2,6,6-tetramethyl-heptane-
dione-3,5 (THD) ligand. The same M3X12 structure can be

Fig. 6 Preparation of
heteroleptic silicon alkoxides
incorporating chelating ligands
(reproduced with permission
from [15]) (a) and the effect of
chelating ligand on the nature of
Si-O(R) bonding (b)

Fig. 7 Solution equilibria
revealed by solubility isotherms
in complex systems, involving
two metal alkoxides and the
parent alcohol as solvent.
Reprinted with permission from
[20]

Fig. 8 Molecular design approach to complex alkoxide structures,
underlining the combinations of coordination polyhedrons as structural
types serving as the basis for selection of ligands [21]
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obtained with MIIMV
2(OR)12, MIIMIV

2(OR)8(acac)2 and
MIIAl2(OR)4(acac)4 compositions, where OR are aliphatic
alkoxide ligands.

It is important to mention that the chelating ligands are
not remaining “glued” to the atom they were attached to
initially, but jump between species in solution equilibria
[22, 23]. Introduction of chelating ligands, just as for silicon
derivatives and independently of their nature (polyols, beta-
diketonates, carboxylates), increases the charge distribution
in the molecules and kinetically facilitates hydrolysis
[24, 25]. These ligands, however, can provide some ther-
modynamic stabilization against moisture, especially for a
compound in the form of large crystals [21].

An important principal property of metal alkoxides is
that they are functioning as both rather strong Brönsted and
Lewis bases. Brönsted basicity is very apparent, because the
alkoxide ligand is a conjugate base of the commonly used
solvent, which is the parent alcohol. It must be noted that
water is a much stronger acid than alcohols and water
molecules interact with the alkoxide anions by protonating
them, causing an electrophilic addition of a proton opening
way for nucleophilic substitution i.e., initiating what has
been described as proton-assisted SN1 type substitution
reaction. Lewis basicity is also due to the presence of an
alkoxide ligand, bearing a free electron pair in the form of a
bonding sigma-orbital located at the oxygen atom. Lewis
basicity explains the often-observed aggregation of metal
alkoxides, forming oligonuclear complexes, and even
complex formation with alcohols (solvation) and with par-
tially substituted amines. It is important to mention that
when the additional donor molecules are not able to form a
supporting hydrogen bond to the Lewis basic alkoxide
ligand, no complexation is observed [26, 27]. Metal alk-
oxides are broadly used as basic catalysts [28, 29] in con-
trast to metal halides that are broadly applied as Lewis acids
in synthetic organic chemistry, in particular, in electrophilic
substitution reactions such as alkylation of aromatic rings
[30].

4 Sol-gel chemistry of metal oxides

In the dawn of Sol-Gel chemistry, in the end of the 1980s to
the beginning of the 1990s, when both molecular and mate-
rials characterization tools were scarce and not truly infor-
mative, the observation of quick transformation of precursors
into metal oxides in organic media with only reaction with
water, led to the erroneous assumption that metal oxide Sol-
Gel chemistry could be controlled by homogeneous kinetics
of hydrolysis-polycondensation and result in polymeric col-
loids [31]. The inspiration was taken from reactions of silica
precursors in organic media with minor amounts of catalysts.
Experimentally observed behavior with mass-precipitation of

hydrated oxide on addition of water was interpreted as for-
mation of a highly cross-linked extended polymer. The
observed delay of gelation on addition of chelating ligands
was viewed as decreasing the speed of hydrolysis and con-
densation (without any direct kinetic evidence for the mole-
cular mechanisms). It was suggested that addition of larger
quantities of chelating ligands (dependent on the case, but
usually over 2 equivalents per metal center) would results in
stable molecular species (“clusters”), while intermediate
substitution ratios would lead to branched polymers believed
to offer a high degree of microporosity [32].

Subsequent studies of the Sol-Gel process revealed,
however, a very different mechanism. It was demonstrated
that the hydrolysis and condensation reactions are both
quick and reversible and constitute a single kinetic phe-
nomenon. Their products are species whose structures are
defined not by step-by-step ligand substitution, but by
straightforward coordination equilibrium. At low hydrolysis
ratios, the structures of the formed species can easily be
related to dense packing motifs and often mimic the forms
observed for polyoxometalate (POM) species in aqueous
media (see Fig. 9) [33].

Tracing this transformation pathway to a logical limit, it
was proposed that in the presence of enough water (high
hydrolysis ratios usually applied in Sol-Gel technology), the
result of the process is a POM-like structure with a dense
and well-ordered metal oxide core and ligand-covered shell,
referred to as Micelle Templated by Self-Assembly of
Ligands (MTSAL), underlying its colloid nature [33, 34]
(see Fig. 10).

These structures act as nuclei of the final oxide phase.
Sol-Gel can thus be seen as nucleation followed only by
aggregation without growth. During the last two decades,
this mechanism has received a multitude of convincing
confirmations. Formation of chemically individual MTSAL
particles was experimentally observed in hydrolytic trans-
formation of homoleptic titanium and titanium/zirconium
alkoxides using in situ DLS measurements [35, 36]. The
size of the species remained the same in a broad interval of
hydrolysis ratios with standard deviation 0.08–0.13 nm, a
value not permitting any substantial variation in the che-
mical composition and indicative of the individual “mole-
cular” nature of the species (see Fig. 11).

It was shown that gels of hydrated TiO2 [37] and
Nb2O5/Ta2O5 [38], produced by different routes, are built
up by aggregation of MTSAL core-shell particles. Pre-
cipitates from hydrolysis of titanium alkoxides were pep-
tized by nitric acid, transforming back to sols [39].
Crystalline TiO2 material, consisting of uniform particles
with a size below 10 nm, could be produced by hydrolysis
of titanium alkoxides in boiling water [40]. Titania
MTSALs were found to be generated in room-temperature
ligand exchange equilibrium involving ammonium oxo-
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lactato-titanate with the commercial name TiBALDH [41].
Cassiterite structured crystalline SnO2 MTSALs were
formed by room temperature sol-gel transformation of
Sn(OtBu)4 in aqueous medium [42].

It was also demonstrated that oligonuclear oxo-alkoxide
complexes of, in the first case, titanium, but even a number
of other early transition elements, were not behaving as
clusters, but, on the contrary, were prone to react further
with the excess of water, especially in the presence of acids
or salts, transforming into larger MTSAL species—nuclei of
the corresponding oxide phases [43–45], see Fig. 12.

Cluster is a linguistically very distinct term used cor-
rectly for a structure containing metal-metal bonds. It is
borrowed from the name of plant fruit structures with strong
internal connections, such as clusters of grapes or clusters of
wheat. Oxo-alkoxide complexes do not feature any stronger
intrinsic bonding between metal atoms, resulting instead
from self-assembly under the action of external forces. They
resemble thus paper bags, used now in Europe for selling
vegetables, filled with, for example, potatoes. We thus
proposed to call such aggregates paper bags (see Fig. 13) in
a recently published viewpoint article [46].

5 Approaching thermodynamically
challenging materials—Single source
precursor approach

The insight into the molecular mechanisms of the Sol-Gel
process on the way to materials facilitates an explanation of
the challenges that emerge on the way to utilizing single-
source precursors of chemically complex materials. It is,
unfortunately, insufficient to produce individual molecules
incorporating different desired cations in a correct ratio.
Such species are not clusters and can change completely
with respect to both composition and structure on further
hydrolytic transformation [47, 48]. This is just one of the
challenges on this track. Another obstacle to cope with is
that the desired oxide phase must exist under the conditions
of precursor transformation into final material. If both con-
ditions are fulfilled, which quite often is the case of complex
oxides with 1:1 metal ratio and perovskite structure (as, for
example, in the case of BaTiO3 and Ba1-xSrxTiO3 [49],
where M(II)TiO(OR)4 stable precursors form with secondary
or even long-chain primary alkoxide residues R, or in case of
REE doped YAlO3 or LaAlO3 [50], where alkoxide bridged

Fig. 10 Sol-Gel mechanism in
homogeneous medium leading
to one-step formation of a
MTSAL particle—a nucleus of
an oxide phase, and in a double
phase system—to coalescence of
MTSALs at an interface,
creating a continuous layer

Fig. 9 Illustration of the one-
step transformations by
hydrolysis-polycondensation on
microhydrolysis: a
tetramolybdate type molecule on
addition of 1 equivalent of water
in toluene/alcohol medium
transforms quantitatively into a
Lindquist type structure [33]

Fig. 11 Auto-correlation
function (ACF) vs time (left)
and particle size vs hydrolysis
ratio (right) for hydrolytic Sol-
Gel synthesis of titania-zirconia
powder. Reprinted with
permission from [35]
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precursors are formed with sec-alcohols), the use of single-
source precursor/intermediate may be reasonable.

When the desired phase does not exist under mild con-
ditions, which is the case of, for example, High Tempera-
ture Superconductors, the single-source precursor approach
in Sol-Gel is useless. In this review we will demonstrate that
in the opposite situation, when the desired phase is (meta)
stable, but the precursor is changing its composition, there

is still an option for use of a single-source precursor. In our
recent studies, we have addressed two cases—one dealing
with an almost mythological titanium molybdate phase
TiMoO5, expected to combine high anodic capacity for use
in alkali metal batteries with particular thermal stability
[51], and REE-doped TiO2 for visible light photocatalysis
[52]. The solution in both cases involved the initial isolation
of a solid heterometallic compound with required compo-
sition, produced by microhydrolysis, and then subjected it
to thermal decomposition under mild conditions (max
500 °C). The thermal decomposition might appear a high-
energy technique, but when the process occurs entirely in
the solid state, diffusion is limited and the energy is used
mostly to improve crystallization of the oxide phase without
separation of the components.

The challenge of titanium molybdate lies in the sig-
nificant differences in the properties of homometallic
oxides—refractory TiO2 and volatile acidic MoO3, which
eliminates the possibility of producing the heterometallic
oxide by conventional (or even high-pressure) solid state
synthesis. Thus, a quest for a single-source precursor was
justified. Producing a heteroelement compound was a
challenge in itself with both cations being highly charged,
excluding the usual Lewis acid-base reaction. It was
apparent that an oxo-substituted species had to be pro-
duced. In the initial attempts, we applied a solution

Fig. 12 Transformation of the
oxo-alkoxide oligonuclear
complexes (a) via intermediate
ordered state (b and below, left)
into oxide nanoparticles
(MTSALs, c and below, right)
[40, 43]

Fig. 13 Visual explanation for terminology describing different types
of oligonuclear complex species—a cluster of grapes for molecules
with metal-metal bonds, and a paper bag with potatoes for aggregates
supported by external molecular self-assembly forces. Reprinted with
permission from [46]
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thermolysis approach followed by re-oxidation that proved
efficient in approaching Mo-Ta heterometallic precursors
[53, 54]:

MoO OMeð Þ4 þTi OiPr
� �

4! 1=2Mo2Ti2O4 OMeð Þ6 OiPr
� �

6 ð1Þ

MoO OiPr
� �

4 þTi OiPr
� �

4! 1=6Mo6Ti6O22 OiPr
� �

16
iPrOH

� � ð2Þ

The yields was, however, quite low, presumably due to
formation of a variety of byproducts. Applying a hydrolytic
route (adding the stoichiometric amounts of water) to access
the iso-propoxide complex, resulted in a very high yield in a
slightly different structure, but still with approximately 1:1
metal composition:

MoO OiPr
� �

4þTi OiPr
� �

4þ 2:67H2O
iPrOH

� � ! 1=7Mo7Ti7þxO31þx OiPr
� �

8þ2x

ð3Þ

Using compound 3 for further production of TiMoO5 by
Sol-Gel failed, yielding MoO3 as major crystalline reaction
product after annealing at 500 °C. This indicated separation
of components at higher hydrolysis ratios. On the contrary,
metal-organic decomposition of Mo7Ti7+xO31+x(O

iPr)8+2x

(3) produced single-phase TiMoO5 with the expected
structure (combination of TiO6-octahedra, sharing corners
with MoO4-tetrahedra) and very attractive electrochemical
characteristics [51].

Rare Earth Element (REE) doped titania is recognized as
an attractive goal for creation of visible light photocatalysts.
Its synthesis by conventional routes is complicated by
building of REE titanates as separate phases on the surface
of titania grains instead of the doped material. Addition of
relatively small amounts of REE(NO3)3·6H2O (Ln=Y, Sm,
Eu) to Ti(OiPr)4 offered with high yields with respect to
REE nitrate a heterometallic complex identified for
REE=Y as YTi2(NO3)2(O

iPr)9 (4). It is very important to
note that this compound results clearly from a reaction
associated with hydrolysis of titanium alkoxide, because the
starting yttrium nitrate is hydrated and brings with it water
for hydrolysis of Ti(OiPr)4. The structure of the hetero-
metallic complex, however, does not contain any oxo- or
hydroxo-ligands, because the structures of the complexes
are not bearing any “memory” of how they emerged and
result simply from the most energetically stable combina-
tion of cations and ligands offered by coordination equili-
brium. Again, heat-treatment of gels obtained on further
hydrolytic transformation of 4 and its analogs with Eu and
Sm did not lead to incorporation of REE into the anatase
structure, while combustion of these precursors with an
excess of Ti(OiPr)4 provided doped materials that kept REE
in their structure even on further annealing at 700 °C. The
obtained materials showed under visible light much better
photocatalytic activity compared to the P25 standard [52].

The solid-state thermal decomposition was thus even in this
case a good means to avoid separation of the components at
higher hydrolysis ratios.

6 Conclusions

The relative speed of hydrolysis and polycondensation can
actually influence the structure and morphology of silica
gels produced in organic medium with rather small
amounts of catalysts. In the case of metal oxides,
hydrolysis-polycondensation is a single kinetic phenom-
enon, leading at commonly exploited hydrolysis ratios to
the nuclei of an oxide phase, possessing POM-like struc-
ture and colloid behavior—MTSALs. Oligonuclear species
obtained at low hydrolysis ratios do not exhibit any pro-
nounced stability on contact with the excess of water and
are also transformed into nuclei of the corresponding oxide
phases.

Application of a single-source precursor works well if its
stoichiometry is maintained in the final nuclei—MTSALs
and when the desired oxide phase is stable under the con-
ditions of precursor transformation to material. The second
requirement is absolute, while the first can be circumvented
by solid state decomposition of the desired precursor.
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