94 research outputs found

    Bone Marrow Allograft Rejection Mediated by a Novel Murine NK Receptor, NKG2I

    Get PDF
    Natural killer (NK) cells mediate bone marrow allograft rejection. However, the molecular mechanisms underlying such a rejection remain elusive. In previous analyses, it has been shown that NK cells recognize allogeneic target cells through Ly-49s and CD94/NKG2 heterodimers. Here, we describe identification and characterization of a novel murine NK receptor, NKG2I, belonging to the NKG2 family. NKG2I, which was composed of 226 amino acids, showed āˆ¼40% homology to the murine NKG2D and CD94 in the C-type lectin domain. Flow cytometric analysis with anti-NKG2I monoclonal antibody (mAb) revealed that expression of NKG2I was largely confined to NK and NKT cells, but was not seen in T cells. Furthermore, anti-NKG2I mAb inhibited NK cellā€“mediated cytotoxicity, whereas cross-linking of NKG2I enhanced interleukin 2ā€“ and interleukin 12ā€“dependent interferon-Ī³ production. Similarly, the injection of anti-NKG2I mAb before the allogeneic bone marrow transfer in vivo impinged on the function of NKG2I, resulting in the enhanced colony formation in the spleen. NKG2I is a novel activating receptor mediating recognition and rejection of allogeneic target cells

    Clinical significance of side population in ovarian cancer cells

    Get PDF
    Recently, accumulating evidence has suggested that tumors, including ovarian cancer, are composed of a heterogeneous cell population with a small subset of cancer stem cells (CSCs) that sustain tumor formation and growth. The emergence of drug resistance is one of the most difficult problems in the treatment of ovarian cancer, which has been explained recently by the potential of CSCs to have superior resistance against anti-cancer drugs than conventional cancer cells. In this study, we expanded this line of study to examine whether this phenomenon is also observed in clinical specimens of ovarian cancer cells. In total we could analyze 28 samples out of 60 obtained from ovarian cancer patients. The clinical samples were subjected to testing of the expression of side population (SP) as a CSC marker, and according to the presence of SP (SP+) or absence of SP (SPāˆ’), clinicopathological significances were analyzed. Although there was no statistical significance, there were more SP+s in recurrent cases as well as in ascitic and peritoneal dissemination than in primary tumor of the ovary. There was no correlation between SP status and FIGO staging. In 19 cases of those who could be followed more than 6Ā months from initial therapy, there were 8 cases of recurrence or death from disease, and all of these were SP+. On the other hand, in 11 cases of disease-free survivors, 6 were SP+. There was a significant difference in prognosis between SP+ and SPāˆ’ (pĀ =Ā 0.017). Although this study was limited, it revealed that SP could be contained more in recurrent or metastatic tumors than in primary tumors, and also that the presence of SP could be a risk factor of recurrence in ovarian cancer. Therefore, a novel therapeutic strategy targeting SP could improve the prognosis of ovarian cancer

    Tumour resistance in induced pluripotent stem cells derived from naked mole-rats

    Get PDF
    The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotypeā€”ARF suppression-induced senescence (ASIS)ā€”that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR

    Introduction for Fisheries and Aquatic Biology

    Get PDF
    Chapter I. Aquatic Environment. Ken FURUYA and Ichiro YASUDA : chapter_1.pdfChapter II. Biology and Ecology of Aqua-Shere. Toyoji KANEKO, Katsumi TSUKAMOTO, Atsushi TSUDA, Yuzuru SUZUKI and Katsufumi SATOH : chapter_2.pdfChapter III. Aquatic Resource and Production. Ichiro AOKI, Kazuo OGAWA, Taku YAMAKAWA and Tomoyoshi YOSHINAGA : chapter_3.pdfChapter IV. Chemistry of Aquatic Organism and Their Utilization. Hiroki ABE, Shugo WATABE, Yoshihiro OCHIAI, Shigeru OKADA, Naoko YOSHIKAWA, Yoshiharu KINOSHITA, Gen KANEKO and Shigeki MATSUNAGA : chapter_4.pdfChapter V. Relation between Aqua-Shere and Human Life. Hisashi KUROKURA, Hirohide MATSUSHIMA, Shingo KUROHAGI, Haruko YAMASHITA, Akinori HINO, Kazumasa IKUTA, Satoquo SEINO, Masahiko ARIJI, Ken FURUYA, Junichiro OKAMOTO and Nobuyuki YAGI : chapter_5.pdfPart of "Introduction for Fisheries and Aquatic Biology

    Macrophage activation syndrome and COVID-19

    No full text
    An emerging, rapidly spreading coronavirus SARS-CoV-2 is causing a devastating pandemic. As we have not developed curative medicine and effective vaccine, the end of this life-threatening infectious disease is still unclear. Severe COVID-19 is often associated with hypercytokinemia, which is typically found in macrophage activation syndrome. SARS-CoV-2 infection causes this strong inflammation within the lung and propagates to respiratory and, ultimately, systemic organ malfunction. Although we have not fully understood the physiological and pathological aspects of COVID-19, current research progress indicates the effectiveness of anti-cytokine therapy. Here, we summarize macrophage activation syndrome and its possible contribution to COVID-19, and cytokine targeted attempts in severe COVID-19 cases

    Functionally distinct NKT cell subsets and subtypes

    No full text

    Myeloid molecular characteristics of human Ī³Ī“ T cells support their acquisition of tumor antigen-presenting capacity

    Get PDF
    Human T cells expressing Ī³Ī“ T cell receptor have a potential to show antigen-presenting cell-like phenotype and function upon their activation. However, the mechanisms that underlie the alterations in human Ī³Ī“ T cells remain largely unclear. In this study, we have investigated the molecular characteristics of human Ī³Ī“ T cells related to their acquisition of antigen-presenting capacity in comparison with activated Ī±Ī² T cells. We found that activated Ī³Ī“ but not Ī±Ī² T cells upregulated cell surface expression of a scavenger receptor, CD36, which seemed to be mediated by signaling through mitogen-activated protein kinase and/or NF-ĪŗB pathways. Confocal microscopical analysis revealed that activated Ī³Ī“ T cells can phagocytose protein antigens. Activated Ī³Ī“ T cells could induce tumor antigen-specific CD8+ T cells using both apoptotic and live tumor cells as antigen resources. Furthermore, we detected that C/EBPĪ±, a critical transcription factor for the development of myeloid-lineage cells, is expressed much higher in Ī³Ī“ T cells than in Ī±Ī² T cells. These results unveiled the molecular mechanisms for the elicitation of antigen-presenting functions in Ī³Ī“ T cells and would also help designing new approaches for Ī³Ī“ T cell-mediated human cancer immunotherapy
    • ā€¦
    corecore