61 research outputs found

    Construction of net isopleth plots in cross-sections of tidal estuaries

    Get PDF
    Construction of isopleth plots of net velocity, material concentration, or material flux in cross-sections of tidal estuaries is not a trivial matter. To construct a flux-preserving isopleth plot requires that each instantaneous measure is weighted by the subarea for which the measure is representative. This area-weighted averaging procedure is outlined. Without area-weighting, net isopleth plots typically yield misleading results in tidal estuaries. In our example, net fluxes of total nitrogen are over-estimated without area-weighting

    Comparison of Buoy-Mounted and Bottom-Moored ADCP Performance at Gray’s Reef

    Get PDF
    Simultaneous ADCP profile measurements are compared over a 2-month period in late 2003. One set of measurements comes from a National Data Buoy Center (NDBC) buoy-mounted ADCP, the other from a bottom-mounted, upward-looking ADCP moored roughly 500 m from the buoy. The study was under- taken to evaluate the proficiency of an experimental configuration by NDBC; unfortunately, the ADCP was not optimally configured. The higher temporally and vertically resolved bottom-mounted ADCP data are interpolated in time and depth to match the buoy-mounted ADCP measurements. It is found that the two ADCP measurements are significantly different. The buoy-mounted measurements are affected by high- frequency (10 h period) noise that is vertically coherent throughout the profiles. This noise results in autospectra that are essentially white, unlike the classic red spectra formed from the bottom-mounted ADCP observations. The spectra imply a practical noise floor of 0.045 m s1 for the buoy-mounted system. Contamination by surface waves is the likely cause of this problem. At tidal frequencies the buoy-mounted system underestimates major axis tidal current magnitude by 10%-40%; interference from the buoy chain and/or fish or plankton are considered the most likely cause of the bias. The subtidal velocity field (periods greater than 40 h) is only partially captured; the correlation coefficient for the east-west current is 0.49 and for the north-south current is 0.64

    Complex EOF Analysis as a Method to Separate Barotropic and Baroclinic Velocity Structure in Shallow Water

    Get PDF
    Defining the vertical depth average of measured currents to be barotropic is a widely used method of separating barotropic and baroclinic tidal currents in the ocean. Away from the surface and bottom bound- ary layers, depth-averaging measured velocity is an excellent estimate of barotropic tidal flow, and internal tidal dynamics can be well represented by the difference between the measured currents and their depth average in the vertical. However, in shallow and/or energetic tidal environments such as the shelf of the South Atlantic Bight (SAB), bottom boundary layers can occupy a significant fraction of the water column, and depth averaging through the bottom boundary layer can overestimate the barotropic current by several tens of centimeters per second near bottom. The depth-averaged current fails to capture the bottom boundary layer structure associated with the barotropic tidal signal, and the resultant estimate of baroclinic tidal currents can mimic a bottom-trapped internal tide. Complex empirical orthogonal function (CEOF) analysis is proposed as a method to retain frictional effects in the estimate of the barotropic tidal currents and allow an improved determination of the baroclinic currents. The method is applied to a midshelf region of the SAB dominated by tides and friction to quantify the effectiveness of CEOF analysis to represent internal structure underlying a strong barotropic signal in shallow water. Using examples of synthesized and measured data, EOF estimates of the barotropic and baroclinic modes of motion are compared to those made using depth averaging. The estimates of barotropic tidal motion using depth-averaging and CEOF methods produce conflicting predictions of the frequencies at which there is meaningful baroclinic variability. The CEOF method preserves the frictional boundary layer as part of the barotropic tidal current structure in the gravest mode, providing a more accurate representation of internal structure in higher modes. The application of CEOF techniques to isolate internal structure co-occurring with highly energetic tidal dynamics in shallow water is a significant test of the method. Successful separation of barotropic and baroclinic modes of motion suggests that, by fully capturing the effects of friction associated with the barotropic tide, CEOF analysis is a viable technique to facilitate examination of the internal tide in similar environments

    An Observation-Based Study of Gulf Stream Meander Kinematics Offshore of Cape Hatteras

    Get PDF
    Gulf Stream (GS) meander structure and propagation offshore of Cape Hatteras are investigated by integrating current measurements from a bottom-moored Acoustic Doppler Current Profiler (ADCP) with high-frequency radar (HFR) surface current measurements and satellite Sea Surface Temperature (SST) images during November 2014. The ADCP measurements provide well-resolved current observations throughout most of the water column, while hourly surface current measurements from HF radars and available satellite SST images provide spatial context to the GS orientation, meander propagation, circulation, and shear structure in the region of the ADCP mooring. The observations provide new insights about meander propagation and evolution in this important transition region. ADCP measurements observed that the increase and deepening intervals of the downstream current with approaching meander crests were typically longer than those for the decrease and shoaling of downstream current, consistent with prominent skewed crests near the surface. The transition time from trough to crest is much greater than that from crest to trough, reflecting the asymmetry in the downstream velocity structure. Vertical shears in the downstream and cross-stream velocity components are indicative of a cold dome centered downslope and offshore of the ADCP. Local maxima in downstream current and bottom temperature at the ADCP occur simultaneously, are accompanied by large vertical velocities, and are led by offshore currents in the upper water column. The mean meander phase speed estimated with HFRs is 48 km/day. Meander periods during the month are about 5-6 days. Where the maxima are seen in the water column, downstream currents reach 2.5 m/s, with current reversals sometimes in excess of 0.5 m/s. Downstream currents occupy an increasing portion of the water column as a crest approaches, and a decreasing fraction as a trough approaches. The deepening increase in downstream velocities with approaching crests is often accompanied by an increase in upstream velocities near the bottom

    Protistan Communities Within the GalĂĄpagos Archipelago With an Emphasis on Micrograzers

    Get PDF
    The GalĂĄpagos Archipelago is a globally significant biodiversity hotspot. However, compared to the relatively well-known megafauna, the distribution and ecological significance of marine protists in this system are poorly understood. To gain an understanding of the protistan assemblages across trophic modes, an intensive oceanographic survey was conducted in the GalĂĄpagos Marine Reserve (GMR) in October of 2018. The Equatorial Undercurrent (EUC)-influenced region had higher chlorophyll-a (Chl-a) concentrations than those of the eastern regions of the archipelago, along with higher abundances of protistan grazers. Specifically, proportions of autotrophic and potentially mixotrophic dinoflagellates were higher in the EUC, whereas in the eastern regions, heterotrophic dinoflagellates and chlorophytes dominated. Taxonomic composition and biochemical indicators suggested proportions of micrograzers and their associated heterotrophic biomass was higher in the oligotrophic, low Chl-a regions in the east. We also report observations from a dinoflagellate bloom in the western archipelago, which was heavily influenced by upwelling of the EUC. The red tide-forming dinoflagellate Scrippsiella lachrymosa was highly detected through light microscopy and DNA amplicon sequencing. In addition, the heterotrophic dinoflagellate Polykrikos kofoidii was detected and, based on cell densities observed in this study and grazing rates obtained from the literature, estimated to potentially graze up to 62% of S. lachrymosa bloom population. Our findings thus provide new insights into the composition of micrograzers and their potential roles in structuring protistan communities in the GalĂĄpagos Archipelago

    Operation and Application of a Regional High-Frequency Radar Network in the Mid-Atlantic Bight

    Get PDF
    The Mid-Atlantic Regional Coastal Ocean Observing System (MARCOOS) High- Frequency Radar Network, which comprises 13 long-range sites, 2 medium-range sites, and 12 standard-range sites, is operated as part of the Integrated Ocean Observing System. This regional implementation of the network has been operational for 2 years and has matured to the point where the radars provide consistent coverage from Cape Cod to Cape Hatteras. A concerted effort was made in the MARCOOS project to increase the resiliency of the radar stations from the elements, power issues, and other issues that can disable the hardware of the system. The quality control and assurance activities in the Mid-Atlantic Bight have been guided by the needs of the Coast Guard Search and Rescue Office. As of May,, 2009, these quality-controlled MARCOOS High-Frequency Radar totals are being served through the Coast Guard\u27s Environmental Data Server to the Coast Guard Search and Rescue Optimal Planning System. In addition to the service to U.S. Coast Guard Search and Rescue Operations, these data support water quality, physical oceanographic, and fisheries research throughout the Mid-Atlantic Bight

    Overview of the Processes driving Exchange At Cape Hatteras Program

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Seim, H., Savidge, D., Andres, M., Bane, J., Edwards, C., Gawarkiewicz, G., He, R., Todd, R., Muglia, M., Zambon, J., Han, L., & Mao, S. Overview of the Processes driving Exchange at Cape Hatteras Program. Oceanography, (2022), https://doi.org/10.5670/oceanog.2022.205.The Processes driving Exchange At Cape Hatteras (PEACH) program seeks to better understand seawater exchanges between the continental shelf and the open ocean near Cape Hatteras, North Carolina. This location is where the Gulf Stream transitions from a boundary-trapped current to a free jet, and where robust along-shelf convergence brings cool, relatively fresh Middle Atlantic Bight and warm, salty South Atlantic Bight shelf waters together, forming an important and dynamic biogeographic boundary. The magnitude of this convergence implies large export of shelf water to the open ocean here. Background on the oceanography of the region provides motivation for the study and gives context for the measurements that were made. Science questions focus on the roles that wind forcing, Gulf Stream forcing, and lateral density gradients play in driving exchange. PEACH observational efforts include a variety of fixed and mobile observing platforms, and PEACH modeling included two different resolutions and data assimilation schemes. Findings to date on mean circulation, the nature of export from the southern Middle Atlantic Bight shelf, Gulf Stream variability, and position variability of the Hatteras Front are summarized, together with a look ahead to forthcoming analyses.We gratefully acknowledge NSF funding (OCE-1558920 to UNC-CH, OCE-1559476 to SkIO, OCE-1558521 to WHOI, OCE-1559178 to NCSU); technical support from Sara Haines, Craig Marquette, Trip Patterson, Nick DeSimone, Erran Sousa, Gabe Matthias, Patrick Deane, Brian Hogue, Frank Bahr, and Ben Hefner; cruise participants Jacob Forsyth, Joleen Heiderich, Chuxuan Li, Marco Valero, Lauren Ball, John McCord, and Kyle Maddux-Lawrence; and the crew of R/V Armstrong for their able support during three PEACH cruises

    Annual and Seasonal Surface Circulation Over the Mid Atlantic Bight Continental Shelf Derived From a Decade of High Frequency Radar Observations

    Get PDF
    A decade (2007–2016) of hourly 6‐km‐resolution maps of the surface currents across the Mid‐Atlantic Bight (MAB) generated by a regional‐scale High Frequency Radar network are used to reveal new insights into the spatial patterns of the annual and seasonal mean surface flows. Across the 10‐year time series, temporal means and interannual and intra‐annual variability are used to quantify the variability of spatial surface current patterns. The 10‐year annual mean surface flows are weaker and mostly cross‐shelf near the coast, increasing in speed and rotating to more alongshore directions near the shelfbreak, and increasing in speed and rotating to flow off‐shelf in the southern MAB. The annual mean surface current pattern is relatively stable year to year compared to the hourly variations within a year. The 10‐year seasonal means exhibit similar current patterns, with winter and summer more cross‐shore while spring and fall transitions are more alongshore. Fall and winter mean speeds are larger and correspond to when mean winds are stronger and cross‐shore. Summer mean currents are weakest and correspond to a time when the mean wind opposes the alongshore flow. Again, intra‐annual variability is much greater than interannual, with the fall season exhibiting the most interseasonal variability in the surface current patterns. The extreme fall seasons of 2009 and 2011 are related to extremes in the wind and river discharge events caused by different persistent synoptic meteorological conditions, resulting in more or less rapid fall transitions from stratified summer to well‐mixed winter conditions
    • 

    corecore