20 research outputs found

    Immunization with a highly attenuated replication-competent herpes simplex virus type 1 mutant, HF10, protects mice from genital disease caused by herpes simplex virus type 2

    Get PDF
    Genital herpes is an intractable disease caused mainly by herpes simplex virus (HSV) type 2 (HSV-2), and is a major concern in public health. A previous infection with HSV type 1 (HSV-1) enhances protection against primary HSV-2 infection to some extent. In this study, we evaluated the ability of HF10, a naturally occurring replication-competent HSV-1 mutant, to protect against genital infection in mice caused by HSV-2. Subcutaneous inoculation of HF10-immunized mice against lethal infection by HSV-2, and attenuated the development of genital ulcer diseases. Immunization with HF10 inhibited HSV-2 replication in the mouse vagina, reduced local inflammation, controlled emergence of neurological dysfunctions of HSV-2 infection, and increased survival. In HF10-immunized mice, we observed rapid and increased production of interferon-γ in the vagina in response to HSV-2 infection, and numerous CD4+ and a few CD8+ T cells localized to the infective focus. CD4+ T cells invaded the mucosal subepithelial lamina propria. Thus, the protective effect of HF10 was related to induction of cellular immunity, mediated primarily by Th1 CD4+ cells. These data indicate that the live attenuated HSV-1 mutant strain HF10 is a promising candidate antigen for a vaccine against genital herpes caused by HSV-2

    Replication of Epstein-Barr Virus Primary Infection in Human Tonsil Tissue Explants

    Get PDF
    Epstein-Barr virus (EBV) may cause a variety of virus-associated diseases, but no antiviral agents have yet been developed against this virus. Animal models are thus indispensable for the pathological analysis of EBV-related infections and the elucidation of therapeutic methods. To establish a model system for the study of EBV infection, we tested the ability of B95–8 virus and recombinant EBV expressing enhanced green fluorescent protein (EGFP) to replicate in human lymphoid tissue. Human tonsil tissues that had been surgically removed during routine tonsillectomy were sectioned into small blocks and placed on top of collagen sponge gels in culture medium at the air-interface, then a cell-free viral suspension was directly applied to the top of each tissue block. Increasing levels of EBV DNA in culture medium were observed after 12–15 days through 24 days post-infection in tissue models infected with B95–8 and EGFP-EBV. Expression levels of eight EBV-associated genes in cells collected from culture medium were increased during culture. EBV-encoded small RNA-positive cells were detected in the interfollicular areas in paraffin-embedded sections. Flow cytometric analyses revealed that most EGFP+ cells were CD3− CD56− CD19+ HLA-DR+, and represented both naïve (immunoglobulin D+) and memory (CD27+) B cells. Moreover, EBV replication in this model was suppressed by acyclovir treatment in a dose-dependent manner. These data suggest that this model has potential for use in the pathological analysis of local tissues at the time of primary infection, as well as for screening novel antiviral agents

    直腸がん患者が認識する術後排便障害とセルフケアの実態

    No full text
    The purpose of this study is to reveal the actual conditions of dyschezia as recognized by postoperative rectal cancer patients and their self-care, as well as the subjective QOL (Schedule for the Evaluation of Individual Quality of Life-Direct Weighting: SEIQoL-DW), and to obtain suggestions for the nursing intervention for improving the self-care of dyschezia and QOL. The subjects were 88 patients (age: 62.2 ± 9.3 years), consisting of 33 and 55 patients that received intersphincteric resection (ISR) and low anterior resection (LAR), respectively. The mean of the SEIQoL-DW index was 66.7 ± 15.3 for ISR and 63.8 ± 14.8 for LAR, showing no significant difference. The dyschezia was grouped into seven categories such as [frequent defecation], [irregular number of defecations], [defecation on oral drug administration], [frequent nocturnal defecation], [fecal incontinence], and [anal pain]. The proportions of [irregular number of defecations], [frequent nocturnal defecation], and [fecal incontinence] were significantly higher for ISR than LAR. The self-care of dyschezia can be summarized into eleven categories such as [washing anus], [applying diapers and pads], [controlling dietary intake], and [controlling defecation]. In conclusion, it is important to understand in detail the fecal control, local anal care, food content, and intake method as nursing interventions using a checklist, and to instruct the patients individually in cooperation with physicians and physical therapists

    Additional file 1: Figure S1. of The A673T mutation in the amyloid precursor protein reduces the production of β-amyloid protein from its β-carboxyl terminal fragment in cells

    No full text
    Immunoreactivity of anti-Aβ antibodies. Recognition sites of anti-Aβ antibodies in the human C99/Aβ sequence (A). A recombinant C99-FLAG containing the A2T substitution was subjected to Western blotting using anti-Aβ antibodies (B). Aβ40 containing the A2T substitution was subjected to Western blotting using anti-Aβ antibodies (C). 82E1 failed to recognize C99-FLAG and Aβ40 containing the A2T substitution. Figure S2. Immunoprecipitation of C99 A2T in APP A673T cells. CHO cells expressing APP A673T were solubilized in 1% NP40 and subjected to immunoprecipitation with 6E10 or 82E1 and to Western blotting, to visualize C99 (upper panel) (A). Immunoprecipitation with 6E10 proved that the level of C99 (C99 A2T) in APP A673T cells was indistinctive of that observed in APP WT cells; however, 82E1 failed to capture C99 A2T (upper and lower panels). These data indicate that the amount of C99 in APP A673T cells was comparable to that detected in APP WT cells. Arrowheads, IgG; * degradation products of APP.CHO cells expressing APP A673T were solubilized in 1% NP40 and subjected to immunoprecipitation with anti-FLAG M2 antibody and to Western blotting (B). Anti-FLAG M2 antibody visualized equal levels of C99 in APP WT and A673T cells (left panel). The blot was reprobed with 82E1 after stripping anti-FLAG M2 (right panel). 82E1 failed to visualize C99 from APP A673T cells, although remnant bands were detected on the blot. These data indicate that the amount of C99 in APP A673T cells was comparable to that detected in APP WT cells. Arrowheads, IgG. Figure S3. Cells expressing APP A673T and C99 A2T exhibited decreased extracellular Aβ production. HEK293, Neuro 2a, and CHO cells were transfected with the APP A673T or C99 A2T construct. Conditioned media were subjected to Western blotting, to visualize and quantify extracellular Aβ, as in Fig. 2A. HEK, HEK293; N2a, Neuro 2a. Data represent means ± SD of three independent experiments. * P < 0.05; ** P < 0.005 (unpaired t-test). Figure S4. No effect of the C99 A2T substitution on the subcellular distribution of γ-secretase components. γ-Secretase components were enriched in lipid raft fractions, as well as caveolin and flotilin raft markers (#4 - #6) (A). The C99 substrate also localized in the fractions, in part; however, C99 A2T was distributed in denser fractions (#5 and #6) of raft fractions compared with C99 WT (#4, #5, and #6) (see Fig. 1B and C). mNCT, mature nicastrin. Quantitative analysis of the distribution of g-secretase components and C99 substrates (B). C99 A2T was distributed in denser fractions (#5 and #6) compared with C99 WT (#4, #5, and #6) (see Fig. 1B and C). This indicated that the level of C99 A2T that was colocalized with g-secretase was decreased. Data represent means ± SD of three independent experiments. No significant difference was observed between C99 WT and C99 A2T (unpaired t-test). Individual C99 blots of each experiment (C). Levels of C99 A2T in fraction 4 were lower than those in fraction 6. However levels of C99 WT in fraction 4 were equivalent or higher than those in fraction 6. Figure S5. C99 in membrane, cytosolic and nuclear fractions. C99 cells are homogenized PEPES buffer containing 250 mM sucrose. Postnuclear fraction was subjected to ultracentrifugation at 100,000 g for 1 h. The pellet was resuspended in the original volume of the PIPES buffer and referred to as membrane fraction. Each fraction was subjected to western blotting to visualize C99 (A). Band intensities of C99, band A and band B in membrane (Mem), cytosolic (Cyto) and nuclear (Nuc) fractions were quantified (B). No prominent difference was observed between C99 WT and C99 A2T. (PDF 935 kb
    corecore