3 research outputs found

    Chemical Modulation of the Human Oligopeptide Transporter 1, hPepT1

    No full text
    In humans, peptides derived from dietary proteins and peptide-like drugs are transported via the proton-dependent oligopeptide transporter hPepT1 (SLC15A1). hPepT1 is located across the apical membranes of the small intestine and kidney, where it serves as a high-capacity low-affinity transporter of a broad range of di- and tripeptides. hPepT1 is also overexpressed in the colon of inflammatory bowel disease (IBD) patients, where it mediates the transport of harmful peptides of bacterial origin. Therefore, hPepT1 is a drug target for prodrug substrates interacting with intracellular proteins or inhibitors blocking the transport of toxic bacterial products. In this study, we construct multiple structural models of hPepT1 representing different conformational states that occur during transport and inhibition. We then identify and characterize five ligands of hPepT1 using computational methods, such as virtual screening and QM-polarized ligand docking (QPLD), and experimental testing with uptake kinetic measurements and electrophysiological assays. Our results improve our understanding of the substrate and inhibitor specificity of hPepT1. Furthermore, the newly discovered ligands exhibit unique chemotypes, providing a framework for developing tool compounds with optimal intestinal absorption as well as future IBD therapeutics against this emerging drug target

    Converting a Light-Driven Proton Pump into a Light-Gated Proton Channel

    No full text
    There are two types of membrane-embedded ion transport machineries in nature. The ion pumps generate electrochemical potential by energy-coupled active ion transportation, while the ion channels produce action potential by stimulus-dependent passive ion transportation. About 80% of the amino acid residues of the light-driven proton pump archaerhodopsin-3 (AR3) and the light-gated cation channel channelrhodopsin (ChR) differ although they share the close similarity in architecture. Therefore, the question arises: How can these proteins function differently? The absorption maxima of ion pumps are red-shifted about 30–100 nm compared with ChRs, implying a structural difference in the retinal binding cavity. To modify the cavity, a blue-shifted AR3 named AR3-T was produced by replacing three residues located around the retinal (i.e., M128A, G132V, and A225T). AR3-T showed an inward H<sup>+</sup> flux across the membrane, raising the possibility that it works as an inward H<sup>+</sup> pump or an H<sup>+</sup> channel. Electrophysiological experiments showed that the reverse membrane potential was nearly zero, indicating light-gated ion channeling activity of AR3-T. Spectroscopic characterization of AR3-T revealed similar photochemical properties to some of ChRs, including an all-<i>trans</i> retinal configuration, a strong hydrogen bond between the protonated retinal Schiff base and its counterion, and a slow photocycle. From these results, we concluded that the functional determinant in the H<sup>+</sup> transporters is localized at the center of the membrane-spanning domain, but not in the cytoplasmic and extracellular domains

    Formation of M‑Like Intermediates in Proteorhodopsin in Alkali Solutions (pH ≥ ∼8.5) Where the Proton Release Occurs First in Contrast to the Sequence at Lower pH

    No full text
    Proteorhodopsin (PR) is an outward light-driven proton pump observed in marine eubacteria. Despite many structural and functional similarities to bacteriorhodopsin (BR) in archaea, which also acts as an outward proton pump, the mechanism of the photoinduced proton release and uptake is different between two H<sup>+</sup>-pumps. In this study, we investigated the pH dependence of the photocycle and proton transfer in PR reconstituted with the phospholipid membrane under alkaline conditions. Under these conditions, as the medium pH increased, a blue-shifted photoproduct (defined as M<sub>a</sub>), which is different from M, with a p<i>K</i><sub>a</sub> of ca. 9.2 was produced. The sequence of the photoinduced proton uptake and release during the photocycle was inverted with the increase in pH. A p<i>K</i><sub>a</sub> value of ca. 9.5 was estimated for this inversion and was in good agreement with the p<i>K</i><sub>a</sub> value of the formation of M<sub>a</sub> (∼9.2). In addition, we measured the photoelectric current generated by PRs attached to a thin polymer film at varying pH. Interestingly, increases in the medium pH evoked bidirectional photocurrents, which may imply a possible reversal of the direction of the proton movement at alkaline pH. On the basis of these findings, a putative photocycle and proton transfer scheme in PR under alkaline pH conditions was proposed
    corecore