2,011 research outputs found
Shock and Release Temperatures in Molybdenum
Shock and release temperatures in Mo were calculated, taking account of
heating from plastic flow predicted using the Steinberg-Guinan model. Plastic
flow was calculated self-consistently with the shock jump conditions: this is
necessary for a rigorous estimate of the locus of shock states accessible. The
temperatures obtained were significantly higher than predicted assuming ideal
hydrodynamic loading. The temperatures were compared with surface emission
spectrometry measurements for Mo shocked to around 60GPa and then released into
vacuum or into a LiF window. Shock loading was induced by the impact of a
planar projectile, accelerated by high explosive or in a gas gun. Surface
velocimetry showed an elastic wave at the start of release from the shocked
state; the amplitude of the elastic wave matched the prediction to around 10%,
indicating that the predicted flow stress in the shocked state was reasonable.
The measured temperatures were consistent with the simulations, indicating that
the fraction of plastic work converted to heat was in the range 70-100% for
these loading conditions
Building representations from natural language
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 37-38).In this thesis, I describe a system I built that produces instantiated representations from descriptions embedded in natural language. For example, in the sentence 'The girl walked to the table', my system produces a description of movement along a path (the girl moves on a path to the table), instantiating a general purpose trajectory representation that models movement along a path. I demonstrate that descriptions found by my system enable the imagining of an entire inner world, transforming sentences into three-dimensional graphical descriptions of action. By building action descriptions from ordinary language, I illustrate the gains we can make by exploiting the connection between language and thought. I assert that a small set of simple representations should be able to provide powerful coverage of human expression through natural language. In particular, I examine the sorts of representations that are common in the Wall Street Journal from the Penn Treebank, providing a counterpoint for the many other sorts of analyses of the Penn Treebank in other work. Then, I turn to recognized experts in provoking our imaginations with words, using my system to examine the work of four great authors to uncover commonalities and differences in their styles from the perspective of the way they make representational choices in their work.by Mark J. Seifter.M.Eng
A human security doctrine for Europe: the Barcelona Report of the Study Group on Europe's Security Capabilities
Explanation for Anomalous Shock Temperatures Measured by Neutron Resonance Spectroscopy
Neutron resonance spectrometry (NRS) has been used to measure the temperature
inside Mo samples during shock loading. The temperatures obtained were
significantly higher than predicted assuming ideal hydrodynamic loading. The
effect of plastic flow and non-ideal projectile behavior were assessed. Plastic
flow was calculated self-consistently with the shock jump conditions: this is
necessary for a rigorous estimate of the locus of shock states accessible.
Plastic flow was estimated to contribute a temperature rise of 53K compared
with hydrodynamic flow. Simulations were performed of the operation of the
explosively-driven projectile system used to induce the shock in the Mo sample.
The simulations predicted that the projectile was significantly curved on
impact, and still accelerating. The resulting spatial variations in load,
including radial components of velocity, were predicted to increase the
apparent temperature that would be deduced from the width of the neutron
resonance by 160K. These corrections are sufficient to reconcile the apparent
temperatures deduced using NRS with the accepted properties of Mo, in
particular its equation of state.Comment: near-final version, waiting for final consent from an autho
Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand
We have constructed an artificial ligand for the hepatocyte-specific asialoglycoprotein receptor for the purpose of generating a synthetic delivery system for DNA. This ligand has a tetra-antennary structure, containing four terminal galactose residues on a branched carrier peptide. The carbohydrate residues of this glycopeptide were introduced by reductive coupling of lactose to the alpha- and epsilon-amino groups of the two N-terminal lysines on the carrier peptide. The C-terminus of the peptide, containing a cysteine separated from the branched N-terminus by a 10 amino acid spacer sequence, was used for conjugation to 3-(2-pyridyldithio)propionate-modified polylysine via disulfide bond formation. Complexes containing plasmid DNA bound to these galactose-polylysine conjugates have been used for asialoglycoprotein receptor-mediated transfer of a luciferase gene into human (HepG2) and murine (BNL CL.2) hepatocyte cell lines. Gene transfer was strongly promoted when amphipathic peptides with pH-controlled membrane-disruption activity, derived from the N-terminal sequence of influenza virus hemagglutinin HA-2, were also present in these DNA complexes. Thus, we have essentially borrowed the small functional domains of two large proteins, asialoglycoprotein and hemagglutinin, and assembled them into a supramolecular complex to generate an efficient gene-transfer system
- …
