737 research outputs found

    Planck intermediate results. XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    Get PDF
    The dust-Hi correlation is used to characterize the emission properties of dust in the diffuse interstellar medium (ISM) from far infrared wavelengths to microwave frequencies. The field of this investigation encompasses the part of the southern sky best suited to study the cosmic infrared and microwave backgrounds. We cross-correlate sky maps from Planck, the Wilkinson Microwave Anisotropy Probe (WMAP), and the diffuse infrared background experiment (DIRBE), at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21 cm line emission of neutral atomic hydrogen, over a contiguous area of 7500 deg^2 centred on the southern Galactic pole. We present a general methodology to study the dust-Hi correlation over the sky, including simulations to quantify uncertainties. Our analysis yields four specific results. (1) We map the temperature, submillimetre emissivity, and opacity of the dust per H-atom. The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence of dust evolution within the diffuse ISM. The mean dust opacity is measured to be (7.1 ± 0.6) × 10^(-27) cm^2 H^(-1) × (Îœ/ 353 GHz)^(1.53 ± 0.03) for 100 ≀ Îœ ≀ 353 GHz. This is a reference value to estimate hydrogen column densities from dust emission at submillimetre and millimetre wavelengths. (2) We map the spectral index ÎČmm of dust emission at millimetre wavelengths (defined here as Îœ ≀ 353 GHz), and find it to be remarkably constant at ÎČ_(mm) = 1.51 ± 0.13. We compare it with the far infrared spectral index ÎČ_(FIR) derived from greybody fits at higher frequencies, and find a systematic difference, ÎČ_(mm) – ÎČ_(FIR) = − 0.15, which suggests that the dust spectral energy distribution (SED) flattens at Îœ ≀ 353 GHz. (3) We present spectral fits of the microwave emission correlated with Hi from 23 to 353 GHz, which separate dust and anomalous microwave emission (AME). We show that the flattening of the dust SED can be accounted for with an additional component with a blackbody spectrum. This additional component, which accounts for (26 ± 6)% of the dust emission at 100 GHz, could represent magnetic dipole emission. Alternatively, it could account for an increasing contribution of carbon dust, or a flattening of the emissivity of amorphous silicates, at millimetre wavelengths. These interpretations make different predictions for the dust polarization SED. (4) We analyse the residuals of the dust-Hi correlation. We identify a Galactic contribution to these residuals, which we model with variations of the dust emissivity on angular scales smaller than that of our correlation analysis. This model of the residuals is used to quantify uncertainties of the CIB power spectrum in a companion Planck paper

    Characterization of the denaturation and renaturation of human plasma vitronectin II. Investigation into the mechanism of formation of multimers

    Get PDF
    Unfolding and refolding of plasma vitronectin appear irreversible under near physiological conditions, with rearrangements of disulfides and self-association to a multimeric form observed as prominent structural alterations which accompany denaturation. A mechanism for the folding reactions of vitronectin has been proposed (Zhuang, P., Blackburn, M. NPeterson, C. B. (1996) J. Biol. Chem. 270, 14323-14332) in which vitronectin acquires a partially folded intermediate structure which is highly prone to oligomerize into a multimeric form. Strongly oxidizing conditions adopted for refolding from urea were effective at preventing disulfide rearrangement which disrupts distal disulfides near the C terminus of the protein. Prohibiting disulfide rearrangement under these conditions, however, was not sufficient to achieve reversibility in folding. In contrast, variations in the ionic strength of the refolding medium affect the partitioning of species so that refolded monomers are obtained at high ionic strength, and self-association is precluded. The effects of ionic strength on the partially folded intermediate in the vitronectin folding pathway appear to favor intramolecular hydrophobic collapse to form a stable hydrophobic core for the monomer versus intermolecular hydrophobic interactions which stabilize multimeric vitronectin. Although both ionic and hydrophobic interactions presumably contribute to subunit interfaces within the multimer, the basic heparin-binding region near the C terminus of the protein does not provide binding interactions which are important for self-association of vitronectin

    Planck 2015 results. XVII. Constraints on primordial non-Gaussianity

    Get PDF
    The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators – separable template-fitting (KSW), binned, and modal – we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone ƒ^(local)_(NL) = 2.5 ± 5.7, ƒ^(equil)_(NL)= -16 ± 70, , and ƒ^(ortho)_(NL) = -34 ± 32 (68% CL, statistical). Combining temperature and polarization data we obtain ƒ^(local)_(NL) = 0.8 ± 5.0, ƒ^(equil)_(NL)= -4 ± 43, and ƒ^(ortho)_(NL) = -26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the “look elsewhere” effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g^(local)_(NL) = (−9.0±7.7)×10^4 (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the ΛCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations

    Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps

    Get PDF
    This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of T_(CMB) = 2.7255 ± 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 ± 1.5 ÎŒK), which is approximatively 1σ higher than the WMAP measurement with a direction that is consistent between the two experiments. We describe the pipeline used to produce the maps ofintensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal
    • 

    corecore