5,844 research outputs found

    Front Propagation in the Pearling Instability of Tubular Vesicles

    Get PDF
    Recently Bar-Ziv and Moses discovered a dynamical shape transformation induced in cylindrical lipid bilayer vesicles by the action of laser tweezers. We develop a hydrodynamic theory of fluid bilayers in interaction with the surrounding water and argue that the effect of the laser is to induce a sudden tension in the membrane. We refine our previous analysis to account for the fact that the shape transformation is not uniform but propagates outward from the laser trap. Applying the marginal stability criterion to this situation gives us an improved prediction for the selected initial wavelength and a new prediction for the propagation velocity, both in rough agreement with the experimental values. For example, a tubule of initial radius 0.7\micron\ has a predicted initial sinusoidal perturbation in its diameter with wavelength 5.5\micron, as observed. The perturbation propagates as a front with the qualitatively correct front velocity a bit less than 100\micron/sec. In particular we show why this velocity is initially constant, as observed, and so much smaller than the natural scale set by the tension. We also predict that the front velocity should increase linearly with laser power. Finally we introduce an approximate hydrodynamic model applicable to the fully nonlinear regime. This model exhibits propagating fronts as well as fully-developed ``pearled" vesicles similar to those seen in the experiments.Comment: 42 pages, 6 eps figures included with text in uuencoded file, ps file available from ftp://dept.physics.upenn.edu/pub/Nelson/pearl_propagation.ps submitted to Journal de Physiqu

    Characterizing Potentials by a Generalized Boltzmann Factor

    Full text link
    Based on the concept of a nonequilibrium steady state, we present a novel method to experimentally determine energy landscapes acting on colloidal systems. By measuring the stationary probability distribution and the current in the system, we explore potential landscapes with barriers up to several hundred \kT. As an illustration, we use this approach to measure the effective diffusion coefficient of a colloidal particle moving in a tilted potential

    Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension

    Full text link
    We study numerically the influence of density and strain rate on the diffusion and mobility of a single tagged particle in a sheared colloidal suspension. We determine independently the time-dependent velocity autocorrelation functions and, through a novel method, the response functions with respect to a small force. While both the diffusion coefficient and the mobility depend on the strain rate the latter exhibits a rather weak dependency. Somewhat surprisingly, we find that the initial decay of response and correlation functions coincide, allowing for an interpretation in terms of an 'effective temperature'. Such a phenomenological effective temperature recovers the Einstein relation in nonequilibrium. We show that our data is well described by two expansions to lowest order in the strain rate.Comment: submitted to EP

    Tagged particle in a sheared suspension: effective temperature determines density distribution in a slowly varying external potential beyond linear response

    Full text link
    We consider a sheared colloidal suspension under the influence of an external potential that varies slowly in space in the plane perpendicular to the flow and acts on one selected (tagged) particle of the suspension. Using a Chapman-Enskog type expansion we derive a steady state equation for the tagged particle density distribution. We show that for potentials varying along one direction only, the tagged particle distribution is the same as the equilibrium distribution with the temperature equal to the effective temperature obtained from the violation of the Einstein relation between the self-diffusion and tagged particle mobility coefficients. We thus prove the usefulness of this effective temperature for the description of the tagged particle behavior beyond the realm of linear response. We illustrate our theoretical predictions with Brownian dynamics computer simulations.Comment: Accepted for publication in Europhys. Let

    Quantum Geometry Phenomenology: Angle and Semiclassical States

    Get PDF
    The phenomenology for the deep spatial geometry of loop quantum gravity is discussed. In the context of a simple model of an atom of space, it is shown how purely combinatorial structures can affect observations. The angle operator is used to develop a model of angular corrections to local, continuum flat-space 3-geometries. The physical effects involve neither breaking of local Lorentz invariance nor Planck scale suppression, but rather reply on only the combinatorics of SU(2) recouping theory. Bhabha scattering is discussed as an example of how the effects might be observationally accessible.Comment: 5 pages, slightly extended version of the contribution to the Loops'11 conference proceeding

    Efficiency at maximum power: An analytically solvable model for stochastic heat engines

    Full text link
    We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional engine working in and with a time-dependent harmonic potential.Comment: 6 pages, 3 figure

    Posterior probability and fluctuation theorem in stochastic processes

    Full text link
    A generalization of fluctuation theorems in stochastic processes is proposed. The new theorem is written in terms of posterior probabilities, which are introduced via the Bayes theorem. In usual fluctuation theorems, a forward path and its time reversal play an important role, so that a microscopically reversible condition is essential. In contrast, the microscopically reversible condition is not necessary in the new theorem. It is shown that the new theorem adequately recovers various theorems and relations previously known, such as the Gallavotti-Cohen-type fluctuation theorem, the Jarzynski equality, and the Hatano-Sasa relation, when adequate assumptions are employed.Comment: 4 page
    • …
    corecore