30 research outputs found

    Single Bead Labeling Method for Combining Confocal Fluorescence On-Bead Screening and Solution Validation of Tagged One-Bead One-Compound Libraries

    Get PDF
    SummaryScreening of one-bead one-compound libraries by incubating beads with fluorescently labeled target protein requires isolation and structure elucidation of a large number of primary hit beads. However, the potency of the identified ligands is only revealed after time consuming and expensive larger scale resynthesis and testing in solution. Often, many of the resynthesized compounds turn out to be weak target binders in solution due to large differences between surface and solution binding affinities. For an industry style high-throughput screening (HTS) process a high false positive rate is detrimental. We have therefore combined single bead and single molecule/single cell techniques into an integrated HTS process in which the picomole amount of substance contained on one isolated hit bead is sufficient for quality control, structure determination, and precise affinity determination to the target protein in solution

    Identification of a Small Molecule Inhibitor of Importin β Mediated Nuclear Import by Confocal On-Bead Screening of Tagged One-Bead One-Compound Libraries

    Get PDF
    In eukaryotic cells, proteins and RNAs are transported between the nucleus and the cytoplasm by nuclear import and export receptors. Over the past decade, small molecules that inhibit the nuclear export receptor CRM1 have been identified, most notably,leptomycin B. However, up to now no small molecule inhibitors of nuclear import have been described. Here we have used our automated confocal nanoscanning and bead picking method (CONA) for on-bead screening of a one-bead one-compound library to identify the first such import inhibitor, karyostatin 1A. Karyostatin 1A binds importin beta with high nanomolar affinity and specifically inhibits importin alpha/beta mediated nuclear import at low micromolar concentrations in vitro and in living cells, without perturbing transportin mediated nuclear import or CRM1 mediated nuclear export. Surface plasmon resonance binding-experiments suggest that karyostatin 1A acts by disrupting the interaction between importin p and the OPase Ran. As a selective inhibitor of the importin alpha/beta import pathway, karyostatin 1A will provide a valuable tool for future studies of nucleocytoplasmic trafficking.</p

    HLA dependency and possible clinical relevance of intrathecally synthesized anti-IgLON5 IgG4 in anti-IgLON5 disease

    Get PDF
    BackgroundAnti-IgLON5 disease is a rare chronic autoimmune disorder characterized by IgLON5 autoantibodies predominantly of the IgG4 subclass. Distinct pathogenic effects were described for anti-IgLON5 IgG1 and IgG4, however, with uncertain clinical relevance.MethodsIgLON5-specific IgG1-4 levels were measured in 46 sera and 20 cerebrospinal fluid (CSF) samples from 13 HLA-subtyped anti-IgLON5 disease patients (six females, seven males) using flow cytometry. Intervals between two consecutive serum or CSF samplings (31 and 10 intervals, respectively) were categorized with regard to the immunomodulatory treatment active at the end of the interval, changes of anti-IgLON5 IgG1 and IgG4 levels, and disease severity. Intrathecal anti-IgLON5 IgG4 synthesis (IS) was assessed using a quantitative method.ResultsThe median age at onset was 66 years (range: 54–75), disease duration 10 years (range: 15–156 months), and follow-up 25 months (range: 0–83). IgLON5-specific IgG4 predominance was observed in 38 of 46 (83%) serum and 11 of 20 (55%) CSF samples. Anti-IgLON5 IgG4 levels prior clinical improvement in CSF but not serum were significantly lower than in those prior stable/progressive disease. Compared to IgLON5 IgG4 levels in serum, CSF levels in HLA-DRB1*10:01 carriers were significantly higher than in non-carriers. Indeed, IgLON5-specific IgG4 IS was demonstrated not only in four of five HLA-DRB1*10:01 carriers but also in one non-carrier. Immunotherapy was associated with decreased anti-IgGLON5 IgG serum levels. In CSF, lower anti-IgLON5 IgG was associated with immunosuppressive treatments used in combination, that is, corticosteroids and/or azathioprine plus intravenous immunoglobulins or rituximab.ConclusionOur findings might indicate that CSF IgLON5-specific IgG4 is frequently produced intrathecally, especially in HLA-DRB1*10:01 carriers. Intrathecally produced IgG4 may be clinically relevant. While many immunotherapies reduce serum IgLON5 IgG levels, more intense immunotherapies induce clinical improvement and may be able to target intrathecally produced anti-IgLON5 IgG. Further studies need to confirm whether anti-IgLON5 IgG4 IS is a suitable prognostic and predictive biomarker in anti-IgLON5 disease

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Novel 1:1 Labeling and Purification Process for C‑Terminal Thioester and Single Cysteine Recombinant Proteins Using Generic Peptidic Toolbox Reagents

    No full text
    We developed a versatile set of chemical labeling reagents which allow dye ligation to the C-terminus of a protein or a single internal cysteine and target purification in a simple two-step process. This simple process results in a fully 1:1 labeled conjugate suitable for all quantitative fluorescence spectroscopy and imaging experiments. We refer to a “generic labeling toolbox” because of the flexibility to choose one of many available dyes, spacers of different lengths and compositions which increase the target solubility, a variety of affinity purification tags, and different cleavage chemistries to release the 1:1 labeled proteins. Studying protein function in vitro or in the context of live cells and organisms is of vital importance in biological research. Although label free detection technologies gain increasing interest in molecular recognition science, fluorescence spectroscopy is still the most often used detection technique for assays and screens both in academic as well as in industrial groups. For generations, fluorescence spectroscopists have labeled their proteins of interest with small fluorescent dyes by random chemical linking on the proteins’ exposed lysines and cysteines. Chemical reactions with a certain excess of activated esters or maleimides of longer wavelength dyes hardly ever result in quantitative labeling of the target protein. Most of the time, more than one exposed amino acid side chain reacts. This results in a mixture of dye–protein complexes of different labeling stoichiometries and labeling sites. Only mass spectrometry allows resolving the precise chemical composition of the conjugates. In “classical” ensemble averaging fluorescent experiments, these labeled proteins are still useful, and quantification of, e.g., ligand binding experiments, is achieved via knowledge of the overall protein concentration and a fluorescent signal change which is proportional to the amount of complex formed. With the development of fluorescence fluctuation analysis techniques working at single molecule resolution, like fluorescence correlation spectroscopy (FCS), fluorescence cross correlation spectroscopy (FCCS), fluorescence intensity diffusion analysis (FIDA), etc., it became important to work with homogeneously labeled target proteins. Each molecule participating in a binding equilibrium should be detectable when it freely fluctuates through the confocal focus of a microscope. The measured photon burst for each transition contains information about the size and the stoichiometry of a protein complex. Therefore, it is important to work with reagents that contain an exact number of tracers per protein at identical positions. The ideal fluorescent tracer–protein complex stoichiometry is 1:1. While genetic tags such as fluorescent proteins (FPs) are widely used to detect proteins, FPs have several limitations compared to chemical tags. For example, FPs cannot easily compete with organic dyes in the flexibility of modification and spectral range; moreover, FPs have disadvantages in brightness and photostability and are therefore not ideal for most biochemical single molecule studies. We present the synthesis of a series of exemplaric toolbox reagents and labeling results on three target proteins which were needed for high throughput screening experiments using fluorescence fluctuation analysis at single molecule resolution. On one target, Hu-antigen R (HuR), we demonstrated the activity of the 1:1 labeled protein in ribonucleic acid (RNA) binding, and the ease of resolving the stoichiometry of an RNA-HuR complex using the same dye on protein and RNA by Fluorescence Intensity Multiple Distribution Analysis (FIMDA) detection

    Terminal adenosyl transferase activity of posttranscriptional regulator HuR revealed by confocal on-bead screening

    No full text
    Posttranscriptional regulation and RNA metabolism have become central topics in the understanding of mammalian gene expression and cell signalling, with the 3' untranslated region emerging as the coordinating unit. The 3' untranslated region trans-acting factor Hu protein R (HuR) forms a central posttranscriptional pathway node bridging between AU-rich element-mediated processes and microRNA regulation. While (m)RNA control by HuR has been extensively characterized, the molecular mode of action still remains elusive. Here we describe the identification of the first RRM3 (RNA recognition motif 3) targeted low molecular weight HuR inhibitors from a one-bead-one-compound library screen using confocal nanoscanning. A further compound characterization revealed the presence of an ATP-binding pocket within HuR RRM3, associated with enzymatic activity. Centered around a metal-ion-coordinating DxD motif, the catalytic site mediates 3'-terminal adenosyl modification of non-polyadenylated RNA substrates by HuR. These findings suggest that HuR actively contributes to RNA modification and maturation and thereby shed an entirely new light on the role of HuR in RNA metabolism

    Chromatograms of Permeated MANT-Iota-Carrageenan Samples After 0, 1, 2 and 3 Hours (pH 7.5).

    No full text
    <p>The concentrations of the fluorescence marker MANT was determined by HPLC in order to derive amounts of iota-carrageenan that have permeated bovine mucosa after 0 hour (blue), 1 hour (purple), 2 hours (pink) and 3 hours (green) incubation with MANT-iota-carrageenan, at pH 7.5. A retention time of approx. 7 minutes was defined for MANT-iota-carrageenan (highlighted by black box) and approx. 15 minutes for free MANT.</p

    Propranolol as a potentially novel treatment of arteriovenous malformations: from bench to bedside

    No full text
    Background: Propranolol is a non-selective blocker of the β-adrenergic receptor and has been used for treatment of proliferative infantile hemangiomas. The vasoconstrictive and antiangiogenic effects of propranolol led us to explore its potential application for the treatment of AVMs. Methods: AVM tissue was cultured after surgical resection in the presence of 100μM propranolol or solvent DMSO. After incubation for 72 hours, tissue was harvested for testing. The expression levels of SDF1α, CXCR4, VEGF and HIF-1 was measured by rt-PCR. Furthermore, data of patients in 2 vascular centres harboring AVM was retrospectively interrogated for a time period of 20 years. The database included information about hemorrhage, AVM size and antihypertensive medication. Descriptive analyses were performed, focusing on the risk of hemorrhage, size of the lesion at presentation and clinical follow-up in patients on β-blocker medication versus those who were not. Results: Among 483 patients, 73 (15%) were under β-blocker-treatment. 48% AVMs presented with hemorrhage at diagnosis. Patients under β-blocker-treatment had a lower risk of hemorrhage at the time of diagnosis in a univariate analysis (p<0,0001;OR13). Patients under β-blocker-treatment showed a significant higher chance for a lower Spetzler-Martin-grade ≤III (p<0,0001;OR6,5) and a lower risk for the presence of an associated aneurysm (p<0,0001;OR3,6). Multivariate analysis including Spetzler-Martin-Grading, young age ≤50, presence of associated aneurysm and β-blocker-treatment showed reduced risk for hemorrhage under β-blocker-treatment (p<0,01,OR0,2). The expression of CXCR4 was suppressed by propranolol most likely through the HIF-1-pathways. The gene-expression of vasculogenesis factors was decreased in with propranolol incubated AVMs. Conclusion: β-Blocker medication seems to be associated with a decreased risk of AVM-related hemorrhage and AVM-size at presentation or during follow-up. Propranolol inhibits SDF1α-induced vasculogenesis by suppressing the expression of CXCR4 most likely through the HIF-1-pathways. Therefore, SDF1α/CXCR4 axis plays an important role in the vasculogenesis and migration of inflammatory cells in AVM lesions

    The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model

    No full text
    <div><p>Background</p><p>Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated <i>in-vitro</i> and <i>in-vivo</i>.</p><p>Principal Findings</p><p>We show <i>in-vitro</i> that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection.</p><p>Conclusion</p><p>A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.</p></div

    Therapeutic efficacy in influenza H1N1(09)pdm lethally infected mice.

    No full text
    <p>Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan and Zanamivir (1 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant.</p
    corecore