119 research outputs found

    A locus for inherited focal segmental glomerulosclerosis maps to chromosome 19q13

    Get PDF
    A locus for inherited focal segmental glomerulosclerosis maps to chromosome 19q13. Rapid Communication. We performed a genome-wide linkage analysis search for a genetic locus responsible for kidney dysfunction in a large family. This inherited condition, characterized by proteinuria, progressive renal insufficiency, and focal segmental glomerulosclerosis, follows autosomal dominant inheritance. We show with a high degree of certainty (maximum 2-point lod score 12.28) that the gene responsible for this condition is located on chromosome 19q13

    Hypertrophic cardiomyopathy in myosin-binding protein C (MYBPC3) Icelandic founder mutation carriers

    Get PDF
    Objective: The myosin-binding protein C (MYBPC3) c.927-2A>G founder mutation accounts for >90% of sarcomeric hypertrophic cardiomyopathy (HCM) in Iceland. This cross-sectional observational study explored the penetrance and phenotypic burden among carriers of this single, prevalent founder mutation. Methods: We studied 60 probands with HCM caused by MYBPC3 c.927-2A>G and 225 first-degree relatives. All participants underwent comprehensive clinical evaluation and relatives were genotyped. Results: Genetic and clinical evaluation of relatives identified 49 genotype-positive (G+) relatives with left ventricular hypertrophy (G+/LVH+), 59 G+without LVH (G+/LVH−) and 117 genotype-negative relatives (unaffected). Compared with HCM probands, G+/ LVH+ relatives were older at HCM diagnosis, had less LVH, a less prevalent diastolic dysfunction, fewer ECG abnormalities, lower serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I levels, and fewer symptoms. The penetrance of HCM was influenced by age and sex; specifically, LVH was present in 39% of G+males but only 9% of G+females under age 40 years (p=0.015), versus 86% and 83%, respectively, after age 60 (p=0.89). G+/LVH− subjects had normal wall thicknesses, diastolic function and NT-proBNP levels, but subtle changes in LV geometry and more ECG abnormalities than their unaffected relatives. Conclusions: Phenotypic expression of the Icelandic MYBPC3 founder mutation varies by age, sex and proband status. Men are more likely to have LVH at a younger age, and disease manifestations were more prominent in probands than in relatives identified via family screening. G+/LVH− individuals had subtle clinical differences from unaffected relatives well into adulthood, indicating subclinical phenotypic expression of the pathogenic mutation

    Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy

    Get PDF
    BACKGROUND: Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking. METHODS: We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype. RESULTS: The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy. CONCLUSIONS: Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.

    Major histocompatibility complex restriction fragment length polymorphisms define three diabetogenic haplotypes in bb and bbn rats

    Get PDF
    BB rats spontaneously develop insulin-dependent, ketosis-prone diabetes mellitus (DM)) Their disease is of autoimmune etiology, since it is characterized by: (a) lymphocytic and rnacrophage inflammation of pancreatic islets (1), (b) circulating autoantibodies that bind to pancreatic islets of Langerhans (2), (c) increased incidence of Ia antigen-bearing T lymphocytes associated with the development of diabetes (3), (d) progressive and selective destruction of insulin-producing beta ceils (1, 4), (e) the ability to transfer disease to immunodeficient animals with concanavalin A-activated splenic lymphocytes (5), and (f) selective destruction of beta cells in transplanted islets (6); in addition, it can be prevented with many forms of immunotherapy (7). BB rats also exhibit a profound T cell lymphocytopenia with an almost total lack of circulating T lymphocytes, although their thymocytes are normal in number and cell surface phenotype (8). In breeding studies, we and others (9, 10) have shown that at least two genes contribute to the development of diabetes in the BB rat. One is autosomal recessive and determines the profound T cell immunodeficiency present in affected rats at birth. The second is linked to RTI, the rat major histocompatibility complex (MHC)

    SarcTrack: an adaptable software tool for efficient large-scale analysis of sarcomere function in hiPSC-cardiomyocytes

    Get PDF
    Rationale: Human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. Objective: We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. Methods and Results: We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C (MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. Conclusions: SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants

    Burden of Rare Sarcomere Gene Variants in the Framingham and Jackson Heart Study Cohorts

    Get PDF
    Rare sarcomere protein variants cause dominant hypertrophic and dilated cardiomyopathies. To evaluate whether allelic variants in eight sarcomere genes are associated with cardiac morphology and function in the community, we sequenced 3,600 individuals from the Framingham Heart Study (FHS) and Jackson Heart Study (JHS) cohorts. Out of the total, 11.2% of individuals had one or more rare nonsynonymous sarcomere variants. The prevalence of likely pathogenic sarcomere variants was 0.6%, twice the previous estimates; however, only four of the 22 individuals had clinical manifestations of hypertrophic cardiomyopathy. Rare sarcomere variants were associated with an increased risk for adverse cardiovascular events (hazard ratio: 2.3) in the FHS cohort, suggesting that cardiovascular risk assessment in the general population can benefit from rare variant analysis

    Cells and gene expression programs in the adult human heart

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and strategies to improve therapeutic opportunities require deeper understanding of the molecular processes of the normal heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavor. Here, using large-scale single cell and nuclei transcriptomic profiling together with state-of-the-art analytical techniques, we characterise the adult human heart cellular landscape covering six anatomical cardiac regions (left and right atria and ventricles, apex and interventricular septum). Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, revealing distinct subsets in the atria and ventricles indicative of diverse developmental origins and specialized properties. Further we define the complexity of the cardiac vascular network which includes clusters of arterial, capillary, venous, lymphatic endothelial cells and an atrial-enriched population. By comparing cardiac cells to skeletal muscle and kidney, we identify cardiac tissue resident macrophage subsets with transcriptional signatures indicative of both inflammatory and reparative phenotypes. Further, inference of cell-cell interactions highlight a macrophage-fibroblast-cardiomyocyte network that differs between atria and ventricles, and compared to skeletal muscle. We expect this reference human cardiac cell atlas to advance mechanistic studies of heart homeostasis and disease

    Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. METHODS: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. RESULTS: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. CONCLUSIONS: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM

    Ablation of lysophosphatidic acid receptor 1 attenuates hypertrophic cardiomyopathy in a mouse model.

    Get PDF
    Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403(+/-)) with Lpar1-ablated mice to create mice carrying both genetic changes (403(+/-) LPAR1(-/-)) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403(+/-) LPAR1(WT), 403(+/-) LPAR1(-/-) mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM
    • …
    corecore