12 research outputs found

    Plasmodium falciparum Clearance Is Rapid and Pitting Independent in Immune Malian Children Treated With Artesunate for Malaria

    Get PDF
    Background. In Plasmodium falciparum-infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into onceinfected RBCs (O-iRBCs). Methods. We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. Results. In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5-4 years, OiRBCs peaked at higher concentrations than in children aged 9-13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5-4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = −0.501; P = .0006) and peak O-iRBC concentration (r = −0.420; P = .0033). Conclusions. Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa

    A comprehensive analysis of drug resistance molecular markers and Plasmodium falciparum genetic diversity in two malaria endemic sites in Mali.

    Get PDF
    BACKGROUND: Drug resistance is one of the greatest challenges of malaria control programme in Mali. Recent advances in next-generation sequencing (NGS) technologies provide new and effective ways of tracking drug-resistant malaria parasites in Africa. The diversity and the prevalence of Plasmodium falciparum drug-resistance molecular markers were assessed in Dangassa and Nioro-du-Sahel in Mali, two sites with distinct malaria transmission patterns. Dangassa has an intense seasonal malaria transmission, whereas Nioro-du-Sahel has an unstable and short seasonal malaria transmission. METHODS: Up to 270 dried blood spot samples (214 in Dangassa and 56 in Nioro-du-Sahel) were collected from P. falciparum positive patients in 2016. Samples were analysed on the Agena MassARRAY® iPLEX platform. Specific codons were targeted in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, Pfarps10, Pfferredoxin, Pfexonuclease and Pfmdr2 genes. The Sanger's 101-SNPs-barcode method was used to assess the genetic diversity of P. falciparum and to determine the parasite species. RESULTS: The Pfcrt_76T chloroquine-resistance genotype was found at a rate of 64.4% in Dangassa and 45.2% in Nioro-du-Sahel (p = 0.025). The Pfdhfr_51I-59R-108N pyrimethamine-resistance genotype was 14.1% and 19.6%, respectively in Dangassa and Nioro-du-Sahel. Mutations in the Pfdhps_S436-A437-K540-A581-613A sulfadoxine-resistance gene was significantly more prevalent in Dangassa as compared to Nioro-du-Sahel (p = 0.035). Up to 17.8% of the isolates from Dangassa vs 7% from Nioro-du-Sahel harboured at least two codon substitutions in this haplotype. The amodiaquine-resistance Pfmdr1_N86Y mutation was identified in only three samples (two in Dangassa and one in Nioro-du-Sahel). The lumefantrine-reduced susceptibility Pfmdr1_Y184F mutation was found in 39.9% and 48.2% of samples in Dangassa and Nioro-du-Sahel, respectively. One piperaquine-resistance Exo_E415G mutation was found in Dangassa, while no artemisinin resistance genetic-background were identified. A high P. falciparum diversity was observed, but no clear genetic aggregation was found at either study sites. Higher multiplicity of infection was observed in Dangassa with both COIL (p = 0.04) and Real McCOIL (p = 0.02) methods relative to Nioro-du-Sahel. CONCLUSIONS: This study reveals high prevalence of chloroquine and pyrimethamine-resistance markers as well as high codon substitution rate in the sulfadoxine-resistance gene. High genetic diversity of P. falciparum was observed. These observations suggest that the use of artemisinins is relevant in both Dangassa and Nioro-du-Sahel

    Effect of red blood cell variants on childhood malaria in Mali: a prospective cohort study

    Get PDF
    Red blood cell (RBC) variants protect African children from severe Plasmodium falciparum malaria. Their individual and interactive impacts on mild disease and parasite density, and their modification by age-dependent immunity, are poorly understood

    Ex-vivo Sensitivity of Plasmodium falciparum to Common Anti-malarial Drugs: The Case of Kéniéroba, a Malaria Endemic Village in Mali

    No full text
    Abstract Background In 2006, the National Malaria Control Program in Mali recommended artemisinin-based combination therapy as the first-line treatment for uncomplicated malaria. Since the introduction of artemisinin-based combination therapy, few reports are available on the level of resistance of Plasmodium falciparum to the most common anti-malarial drugs in Mali. Methods From 2016 to 2017, we assessed the ex-vivo drug sensitivity of P. falciparum isolates in Kéniéroba, a village located in a rural area of southern Mali. We collected P. falciparum isolates from malaria-infected children living in Kéniéroba. The isolates were tested for ex-vivo sensitivity to commonly used anti-malarial drugs, namely chloroquine, quinine, amodiaquine, mefloquine, lumefantrine, dihydroartermisinin, and piperaquine. We used the 50% inhibitory concentration determination method, which is based on the incorporation of SYBR® Green into the parasite’s genetic material. Results Plasmodium falciparum isolates were found to have a reduced ex-vivo sensitivity to quinine (25.7%), chloroquine (12.2%), amodiaquine (2.7%), and mefloquine (1.3%). In contrast, the isolates were 100% sensitive to lumefantrine, dihydroartermisinin, and piperaquine. A statistically significant correlation was found between 50% inhibitory concentration values of quinine and amodiaquine (r = 0.80; p < 0.0001). Conclusions Plasmodium falciparum isolates were highly sensitive to dihydroartermisinin, lumefantrine, and piperaquine and less sensitive to amodiaquine (n = 2), mefloquine (n = 1), and quinine (n = 19). Therefore, our data support the previously reported increasing trend in chloroquine sensitivity in Mali

    Plasma uric acid levels correlate with inflammation and disease severity in Malian children with Plasmodium falciparum malaria.

    Get PDF
    Plasmodium falciparum elicits host inflammatory responses that cause the symptoms and severe manifestations of malaria. One proposed mechanism involves formation of immunostimulatory uric acid (UA) precipitates, which are released from sequestered schizonts into microvessels. Another involves hypoxanthine and xanthine, which accumulate in parasitized red blood cells (RBCs) and may be converted by plasma xanthine oxidase to UA at schizont rupture. These two forms of 'parasite-derived' UA stimulate immune cells to produce inflammatory cytokines in vitro.We measured plasma levels of soluble UA and inflammatory cytokines and chemokines (IL-6, IL-10, sTNFRII, MCP-1, IL-8, TNFα, IP-10, IFNγ, GM-CSF, IL-1β) in 470 Malian children presenting with uncomplicated malaria (UM), non-cerebral severe malaria (NCSM) or cerebral malaria (CM). UA levels were elevated in children with NCSM (median 5.74 mg/dl, 1.21-fold increase, 95% CI 1.09-1.35, n = 23, p = 0.0007) and CM (median 5.69 mg/dl, 1.19-fold increase, 95% CI 0.97-1.41, n = 9, p = 0.0890) compared to those with UM (median 4.60 mg/dl, n = 438). In children with UM, parasite density and plasma creatinine levels correlated with UA levels. These UA levels correlated with the levels of seven cytokines [IL-6 (r = 0.259, p<0.00001), IL-10 (r = 0.242, p<0.00001), sTNFRII (r = 0.221, p<0.00001), MCP-1 (r = 0.220, p<0.00001), IL-8 (r = 0.147, p = 0.002), TNFα (r = 0.132, p = 0.006) and IP-10 (r = 0.120, p = 0.012)]. In 39 children, UA levels were 1.49-fold (95% CI 1.34-1.65; p<0.0001) higher during their malaria episode [geometric mean titer (GMT) 4.67 mg/dl] than when they were previously healthy and aparasitemic (GMT 3.14 mg/dl).Elevated UA levels may contribute to the pathogenesis of P. falciparum malaria by activating immune cells to produce inflammatory cytokines. While this study cannot identify the cause of elevated UA levels, their association with parasite density and creatinine levels suggest that parasite-derived UA and renal function may be involved. Defining pathogenic roles for parasite-derived UA precipitates, which we have not directly studied here, requires further investigation.ClinicalTrials.gov NCT00669084

    Cytokine levels, stratified by clinical presentation.<sup>a</sup>

    No full text
    a<p>UM = uncomplicated malaria; NCSM = non-cerebral severe malaria; CM = cerebral malaria.</p>b<p>The median (IQR) of each cytokine level is shown.</p>c<p>The 24 children met the following criteria for NCSM: 1 had severe malarial anemia, 9 had prostration, and 14 had repetitive vomiting.</p>d<p>p-values were calculated using the Mann-Whitney test.</p>e<p>All cytokine concentrations are expressed as pg/ml, except for sTNFRII (ng/ml).</p

    Demographic, parasitological and biochemical parameters, stratified by clinical presentation.<sup>a</sup>

    No full text
    a<p>UM = uncomplicated malaria; NCSM = non-cerebral severe malaria; CM = cerebral malaria.</p>b<p>The median (IQR) of each parameter is shown, unless otherwise indicated.</p>c<p>The 24 children met the following criteria for NCSM: 1 had severe malarial anemia, 9 had prostration, and 14 had repetitive vomiting.</p>d<p>p-values were calculated using the Mann-Whitney test, unless otherwise indicated.</p>e<p>For sex comparisons, the associated statistic is the odds ratio (instead of fold-change). Matching 95% CIs were calculated as described <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046424#pone.0046424-Fay1" target="_blank">[38]</a>.</p>f<p>p-values were calculated using the Fisher's exact test.</p

    Uric acid (UA) elevations in Malian children with uncomplicated and severe falciparum malaria.

    No full text
    <p><b>a,</b> Plasma UA levels were measured in Malian children who presented with uncomplicated (UM), non-cerebral severe (NCSM) and cerebral malaria (CM). We show traditional boxplots (i.e., middle line is median, box is interquartile range) with points randomly jittered according to their density similar to violin plots <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046424#pone.0046424-Hintze1" target="_blank">[36]</a><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046424#pone.0046424-Atoh1" target="_blank">[37]</a>. <b>b,</b> Plasma UA levels were measured in a cohort of 39 healthy aparasitemic Malian children in May 2008 (prior to the malaria season) and again at their first episode of UM during the 2008 malaria season.</p
    corecore