4,271 research outputs found
Privacy protocols
Security protocols enable secure communication over insecure channels.
Privacy protocols enable private interactions over secure channels. Security
protocols set up secure channels using cryptographic primitives. Privacy
protocols set up private channels using secure channels. But just like some
security protocols can be broken without breaking the underlying cryptography,
some privacy protocols can be broken without breaking the underlying security.
Such privacy attacks have been used to leverage e-commerce against targeted
advertising from the outset; but their depth and scope became apparent only
with the overwhelming advent of influence campaigns in politics. The blurred
boundaries between privacy protocols and privacy attacks present a new
challenge for protocol analysis. Covert channels turn out to be concealed not
only below overt channels, but also above: subversions, and the level-below
attacks are supplemented by sublimations and the level-above attacks.Comment: 38 pages, 6 figure
Real-Time Hand Tracking Using a Sum of Anisotropic Gaussians Model
Real-time marker-less hand tracking is of increasing importance in
human-computer interaction. Robust and accurate tracking of arbitrary hand
motion is a challenging problem due to the many degrees of freedom, frequent
self-occlusions, fast motions, and uniform skin color. In this paper, we
propose a new approach that tracks the full skeleton motion of the hand from
multiple RGB cameras in real-time. The main contributions include a new
generative tracking method which employs an implicit hand shape representation
based on Sum of Anisotropic Gaussians (SAG), and a pose fitting energy that is
smooth and analytically differentiable making fast gradient based pose
optimization possible. This shape representation, together with a full
perspective projection model, enables more accurate hand modeling than a
related baseline method from literature. Our method achieves better accuracy
than previous methods and runs at 25 fps. We show these improvements both
qualitatively and quantitatively on publicly available datasets.Comment: 8 pages, Accepted version of paper published at 3DV 201
An intuitive control space for material appearance
Many different techniques for measuring material appearance have been
proposed in the last few years. These have produced large public datasets,
which have been used for accurate, data-driven appearance modeling. However,
although these datasets have allowed us to reach an unprecedented level of
realism in visual appearance, editing the captured data remains a challenge. In
this paper, we present an intuitive control space for predictable editing of
captured BRDF data, which allows for artistic creation of plausible novel
material appearances, bypassing the difficulty of acquiring novel samples. We
first synthesize novel materials, extending the existing MERL dataset up to 400
mathematically valid BRDFs. We then design a large-scale experiment, gathering
56,000 subjective ratings on the high-level perceptual attributes that best
describe our extended dataset of materials. Using these ratings, we build and
train networks of radial basis functions to act as functionals mapping the
perceptual attributes to an underlying PCA-based representation of BRDFs. We
show that our functionals are excellent predictors of the perceived attributes
of appearance. Our control space enables many applications, including intuitive
material editing of a wide range of visual properties, guidance for gamut
mapping, analysis of the correlation between perceptual attributes, or novel
appearance similarity metrics. Moreover, our methodology can be used to derive
functionals applicable to classic analytic BRDF representations. We release our
code and dataset publicly, in order to support and encourage further research
in this direction
Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices
This paper proposes an efficient probabilistic method that computes
combinatorial gradient fields for two dimensional image data. In contrast to
existing algorithms, this approach yields a geometric Morse-Smale complex that
converges almost surely to its continuous counterpart when the image resolution
is increased. This approach is motivated using basic ideas from probability
theory and builds upon an algorithm from discrete Morse theory with a strong
mathematical foundation. While a formal proof is only hinted at, we do provide
a thorough numerical evaluation of our method and compare it to established
algorithms.Comment: 17 pages, 7 figure
- …