4,041 research outputs found
Detection of single trial power coincidence for the identification of distributed cortical processes in a behavioral context
Poster presentation: The analysis of neuronal processes distributed across multiple cortical areas aims at the identification of interactions between signals recorded at different sites. Such interactions can be described by measuring the stability of phase angles in the case of oscillatory signals or other forms of signal dependencies for less regular signals. Before, however, any form of interaction can be analyzed at a given time and frequency, it is necessary to assess whether all potentially contributing signals are present. We have developed a new statistical procedure for the detection of coincident power in multiple simultaneously recorded analog signals, allowing the classification of events as 'non-accidental co-activation'. This method can effectively operate on single trials, each lasting only for a few seconds. Signals need to be transformed into time-frequency space, e.g. by applying a short-time Fourier transformation using a Gaussian window. The discrete wavelet transform (DWT) is used in order to weight the resulting power patterns according to their frequency. Subsequently, the weighted power patterns are binarized via applying a threshold. At this final stage, significant power coincidence is determined across all subgroups of channel combinations for individual frequencies by selecting the maximum ratio between observed and expected duration of co-activation as test statistic. The null hypothesis that the activity in each channel is independent from the activity in every other channel is simulated by independent, random rotation of the respective activity patterns. We applied this procedure to single trials of multiple simultaneously sampled local field potentials (LFPs) obtained from occipital, parietal, central and precentral areas of three macaque monkeys. Since their task was to use visual cues to perform a precise arm movement, co-activation of numerous cortical sites was expected. In a data set with 17 channels analyzed, up to 13 sites expressed simultaneous power in the range between 5 and 240 Hz. On average, more than 50% of active channels participated at least once in a significant power co-activation pattern (PCP). Because the significance of such PCPs can be evaluated at the level of single trials, we are confident that this procedure is useful to study single trial variability with sufficient accuracy that much of the behavioral variability can be explained by the dynamics of the underlying distributed neuronal processes
Real-Time Hand Tracking Using a Sum of Anisotropic Gaussians Model
Real-time marker-less hand tracking is of increasing importance in
human-computer interaction. Robust and accurate tracking of arbitrary hand
motion is a challenging problem due to the many degrees of freedom, frequent
self-occlusions, fast motions, and uniform skin color. In this paper, we
propose a new approach that tracks the full skeleton motion of the hand from
multiple RGB cameras in real-time. The main contributions include a new
generative tracking method which employs an implicit hand shape representation
based on Sum of Anisotropic Gaussians (SAG), and a pose fitting energy that is
smooth and analytically differentiable making fast gradient based pose
optimization possible. This shape representation, together with a full
perspective projection model, enables more accurate hand modeling than a
related baseline method from literature. Our method achieves better accuracy
than previous methods and runs at 25 fps. We show these improvements both
qualitatively and quantitatively on publicly available datasets.Comment: 8 pages, Accepted version of paper published at 3DV 201
An intuitive control space for material appearance
Many different techniques for measuring material appearance have been
proposed in the last few years. These have produced large public datasets,
which have been used for accurate, data-driven appearance modeling. However,
although these datasets have allowed us to reach an unprecedented level of
realism in visual appearance, editing the captured data remains a challenge. In
this paper, we present an intuitive control space for predictable editing of
captured BRDF data, which allows for artistic creation of plausible novel
material appearances, bypassing the difficulty of acquiring novel samples. We
first synthesize novel materials, extending the existing MERL dataset up to 400
mathematically valid BRDFs. We then design a large-scale experiment, gathering
56,000 subjective ratings on the high-level perceptual attributes that best
describe our extended dataset of materials. Using these ratings, we build and
train networks of radial basis functions to act as functionals mapping the
perceptual attributes to an underlying PCA-based representation of BRDFs. We
show that our functionals are excellent predictors of the perceived attributes
of appearance. Our control space enables many applications, including intuitive
material editing of a wide range of visual properties, guidance for gamut
mapping, analysis of the correlation between perceptual attributes, or novel
appearance similarity metrics. Moreover, our methodology can be used to derive
functionals applicable to classic analytic BRDF representations. We release our
code and dataset publicly, in order to support and encourage further research
in this direction
Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices
This paper proposes an efficient probabilistic method that computes
combinatorial gradient fields for two dimensional image data. In contrast to
existing algorithms, this approach yields a geometric Morse-Smale complex that
converges almost surely to its continuous counterpart when the image resolution
is increased. This approach is motivated using basic ideas from probability
theory and builds upon an algorithm from discrete Morse theory with a strong
mathematical foundation. While a formal proof is only hinted at, we do provide
a thorough numerical evaluation of our method and compare it to established
algorithms.Comment: 17 pages, 7 figure
A Low-Dimensional Representation for Robust Partial Isometric Correspondences Computation
Intrinsic isometric shape matching has become the standard approach for pose
invariant correspondence estimation among deformable shapes. Most existing
approaches assume global consistency, i.e., the metric structure of the whole
manifold must not change significantly. While global isometric matching is well
understood, only a few heuristic solutions are known for partial matching.
Partial matching is particularly important for robustness to topological noise
(incomplete data and contacts), which is a common problem in real-world 3D
scanner data. In this paper, we introduce a new approach to partial, intrinsic
isometric matching. Our method is based on the observation that isometries are
fully determined by purely local information: a map of a single point and its
tangent space fixes an isometry for both global and the partial maps. From this
idea, we develop a new representation for partial isometric maps based on
equivalence classes of correspondences between pairs of points and their
tangent spaces. From this, we derive a local propagation algorithm that find
such mappings efficiently. In contrast to previous heuristics based on RANSAC
or expectation maximization, our method is based on a simple and sound
theoretical model and fully deterministic. We apply our approach to register
partial point clouds and compare it to the state-of-the-art methods, where we
obtain significant improvements over global methods for real-world data and
stronger guarantees than previous heuristic partial matching algorithms.Comment: 17 pages, 12 figure
- …