12 research outputs found

    Desglucosyrioside, Eriocarpin

    No full text

    Transformations of pesticides in the atmosphere: A state of the art

    No full text
    The current knowledge about transformation rates and products of pesticides in the atmosphere is reviewed. Reactive species and their concentrations in the atmosphere are presented. Reactions of pesticides with these species (including photolysis) in the gas and the particulate phase are evaluated from available experimental data. The potential of estimation methods is discussed. Experimental techniques for laboratory and outdoor measurements are reviewed. Finally, an estimation is made of uncertainties in atmospheric lifetimes due to chemical or physical reactions. It is concluded that the most important transformation of pesticides in the atmosphere is due to reaction with OH radicals. Very few experimental data for pesticides are available though. The levels of uncertainty in OH radical concentrations are acceptable, however, for a proper estimation of atmospheric removal rates due to reactions with OH radicals of those pesticides for which experimental transformation rates (of homologues) are available

    Applications of Metabolomics in Agriculture

    No full text
    Biological systems are exceedingly complex. The unraveling of the genome in plants and humans revealed fewer than the anticipated number of genes. Therefore, other processes such as the regulation of gene expression, the action of gene products, and the metabolic networks resulting from catalytic proteins must make fundamental contributions to the remarkable diversity inherent in living systems. Metabolomics is a relatively new approach aimed at improved understanding of these metabolic networks and the subsequent biochemical composition of plants and other biological organisms. Analytical tools within metabolomics including mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy can profile the impact of time, stress, nutritional status, and environmental perturbation on hundreds of metabolites simultaneously resulting in massive, complex data sets. This information, in combination with transcriptomics and proteomics, has the potential to generate a more complete picture of the composition of food and feed products, to optimize crop trait development, and to enhance diet and health. Selected presentations from an American Chemical Society symposium held in March 2005 have been assembled to highlight the emerging application of metabolomics in agricultur
    corecore