49 research outputs found

    Potential ring of Dirac nodes in a new polymorph of Ca3_3P2_2

    Full text link
    We report the crystal structure of a new polymorph of Ca3_3P2_2, and an analysis of its electronic structure. The crystal structure was determined through Rietveld refinements of powder synchrotron x-ray diffraction data. Ca3_3P2_2 is found to be a variant of the Mn5_5Si3_3 structure type, with a Ca ion deficiency compared to the ideal 5:3 stoichiometry to yield a charge-balanced compound. We also report the observation of a secondary phase, Ca5_5P3_3H, in which the Ca and P sites are fully occupied and the presence of interstitial hydride ions creates a closed-shell electron-precise compound. We show via electronic structure calculations of Ca3_3P2_2 that the compound is stabilized by a gap in the density of states compared to the hypothetical compound Ca5_5P3_3. Moreover, the calculated band structure of Ca3_3P2_2 indicates that it should be a three-dimensional Dirac semimetal with a highly unusual ring of Dirac nodes at the Fermi level. The Dirac states are protected against gap opening by a mirror plane in a manner analogous to graphene. The results suggest that further study of the electronic properties of Ca3_3P2_2 will be of interest

    Differences in chemical doping matter - Superconductivity in Ti1-xTaxSe2 but not in Ti1-xNbxSe2

    Full text link
    We report that 1T-TiSe2, an archetypical layered transition metal dichalcogenide, becomes superconducting when Ta is substituted for Ti but not when Nb is substituted for Ti. This is unexpected because Nb and Ta should be chemically equivalent electron donors. Superconductivity emerges near x = 0.02 for Ti1-xTaxSe2, while for Ti1-xNbxSe2, no superconducting transitions are observed above 0.4 K. The equivalent chemical nature of the dopants is confirmed by X-ray photoelectron spectroscopy. ARPES and Raman scattering studies show similarities and differences between the two systems, but the fundamental reasons why the Nb and Ta dopants yield such different behavior are unknown. We present a comparison of the electronic phase diagrams of many electron-doped 1T-TiSe2 systems, showing that they behave quite differently, which may have broad implications in the search for new superconductors. We propose that superconducting Ti0.8Ta0.2Se2 will be suitable for devices and other studies based on exfoliated crystal flakes.Comment: 31 pages, 7 Figures, 2 table

    Tolerance of allogromiid Foraminifera to severely elevated carbon dioxide concentrations : implications to future ecosystem functioning and paleoceanographic interpretations

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Global and Planetary Change 65 (2009): 107-114, doi:10.1016/j.gloplacha.2008.10.013.Increases in the partial pressure of carbon dioxide (pCO2) in the atmosphere will significantly affect a wide variety of terrestrial fauna and flora. Because of tight atmospheric-oceanic coupling, shallow-water marine species are also expected to be affected by increases in atmospheric carbon dioxide concentrations. One proposed way to slow increases in atmospheric pCO2 is to sequester CO2 in the deep sea. Thus, over the next few centuries marine species will be exposed to changing seawater chemistry caused by ocean-atmospheric exchange and/or deep-ocean sequestration. This initial case study on one allogromiid foraminiferal species (Allogromia laticollaris) was conducted to begin to ascertain the effect of elevated pCO2 on benthic Foraminifera, which are a major meiofaunal constituent of shallow- and deep-water marine communities. Cultures of this thecate foraminiferan protist were used for 10-14-day experiments. Experimental treatments were executed in an incubator that controlled CO2 (15 000; 30 000; 60 000; 90 000; 200 000 ppm), temperature and humidity; atmospheric controls (i.e., ~375 ppm CO2) were executed simultaneously. Although the experimental elevated pCO2 values are far above foreseeable surface water pCO2, they were selected to represent the spectrum of conditions expected for the benthos if deep-sea CO2 sequestration becomes a reality. Survival was assessed in two independent ways: pseudopodial presence/absence and measurement of adenosine triphosphate (ATP), which is an indicator of cellular energy. Substantial proportions of A. laticollaris populations survived 200 000 ppm CO2 although the mean of the median [ATP] of survivors was statistically lower for this treatment than for that of atmospheric control specimens. After individuals that had been incubated in 200 000 ppm CO2 for 12 days were transferred to atmospheric conditions for ~24 hours, the [ATP] of live specimens (survivors) approximated those of the comparable atmospheric control treatment. Incubation in 200 000 ppm CO2 also resulted in reproduction by some individuals. Results suggest that certain Foraminifera are able to tolerate deep-sea CO2 sequestration and perhaps thrive as a result of elevated pCO2 that is predicted for the next few centuries, in a high-pCO2 world. Thus, allogromiid foraminiferal “blooms” may result from climate change. Furthermore, because allogromiids consume a variety of prey, it is likely that they will be major players in ecosystem dynamics of future coastal sedimentary environments.This work was funded by US Department of Energy grant # DE-FG02-03ER63696 (to J. Kennett and J. Bernhard), NSF OCE-0725966, and the WHOI Summer Student Fellow Program, which is funded by NSF Research Experience for Undergraduates Program grant #OCE-0139423

    Maintenance of cross-sector partnerships: the role of frames in sustained collaboration

    Get PDF
    We examine the framing mechanisms used to maintain a cross-sector partnership (XSP) that was created to address a complex long-term social issue. We study the first eight years of existence of an XSP that aims to create a market for recycled phosphorus, a nutrient that is critical to crop growth but whose natural reserves have dwindled significantly. Drawing on 27 interviews and over 3,000 internal documents, we study the evolution of different frames used by diverse actors in an XSP. We demonstrate the role of framing in helping actors to avoid some of the common pitfalls for an XSP, such as debilitating conflict, and in creating sufficient common ground to sustain collaboration. As opposed to a commonly held assumption in the XSP literature, we find that collaboration in a partnership does not have to result in a unanimous agreement around a single or convergent frame regarding a contentious issue. Rather, successful collaboration between diverse partners can also be achieved by maintaining a productive tension between different frames through ‘optimal’ frame plurality – not excessive frame variety that may prevent agreements from emerging, but the retention of a select few frames and the deletion of others towards achieving a narrowing frame bandwidth. One managerial implication is that resources need not be focussed on reaching a unanimous agreement among all partners on a single mega-frame vis-à-vis a contentious issue, but can instead be used to kindle a sense of unity in diversity that allows sufficient common ground to emerge, despite the variety of actors and their positions
    corecore