18 research outputs found

    Electrochemical Therapy of In Vivo Rabbit Cutaneous Tissue

    No full text
    ObjectivesTo examine the acid-base and histological changes in in vivo rabbit cutaneous tissue after electrochemical therapy.Study designIn vivo rabbit tissue study.MethodsThe shaved skin on the backs of female Oryctolagus cuniculi were assigned to treatments with or without tumescence with normal saline. Two platinum-needle electrodes were inserted into each treatment area and connected to a direct current (DC) power supply. Voltage (3-5 V) was varied and applied for 5 minutes. The wound-healing process was monitored via digital photography and ultrasonography until euthanasia at day 29. Treatment areas were biopsied, and specimens were sectioned through a sagittal midline across both electrode insertion sites. Samples were then evaluated utilizing light microscopy (hematoxylin and eosin, Masson's Trichrome, and Picrosirius red).ResultsTreatment sites developed mild inflammation that dissipated at lower voltages or became scabs at higher voltages. Ultrasonography demonstrated acoustic shadowing with spatial spread that increased with increasing voltage application. The 4- and 5-V sites treated with saline had localized areas of increased tissue density at day 29. Although specimens treated with 3 V did not look significantly different from control tissue, 4- and 5-V samples with and without saline tumescence had finer, less-organized collagen fibers and increased presence of fibrocytes and inflammatory infiltrates.ConclusionsElectrochemical therapy caused localized injury to in vivo rabbit cutaneous tissue, prompting regenerative wound repair. With future development, this technology may offer precise, low-cost rejuvenation to restore the functionality and appearance of dermal scars and keloids.Level of evidenceNA Laryngoscope, 131:E2196-E2203, 2021

    Exploring feedback‐controlled versus open‐circuit electrochemical lipolysis in ex vivo and in vivo porcine fat: A feasibility study

    No full text
    ObjectivesMinimally invasive fat sculpting techniques are becoming more widespread with the development of office-based devices and therapies. Electrochemical lipolysis (ECLL) is a needle-based technology that uses direct current (DC) to electrolyze tissue water creating acid and base in situ. In turn, fat is saponified and adipocyte cell membrane lysis occurs. The electrolysis of water can be accomplished using a simple open-loop circuit (V-ECLL) or by incorporating a feedback control circuit using a potentiostat (P-ECLL). A potentiostat utilizes an operational amplifier with negative feedback to allow users to precisely control voltage at specific electrodes. To date, the variation between the two approaches has not been studied. The aim of this study was to assess current and charge transfer variation and lipolytic effect created by the two approaches in an in vivo porcine model.MethodsCharge transfer measurements from ex vivo V-ECLL and P-ECLL treated porcine skin and fat were recorded at -1 V P-ECLL, -2 V P-ECLL, -3 V P-ECLL, and -5 V V-ECLL each for 5 min to guide dosimetry parameters for in vivo studies. In follow-up in vivo studies, a sedated female Yorkshire pig was treated with both V-ECLL and P-ECLL across the dorsal surface over a range of dosimetry parameters, including -1.5 V P-ECLL, -2.5 V P-ECLL, -3.5 V P-ECLL, and 5 V V-ECLL each treated for 5 min. Serial biopsies were performed at baseline before treatment, 1, 2, 7, 14, and 28 days after treatment. Tissue was examined using fluorescence microscopy and histology to compare the effects of the two ECLL approaches.ResultsBoth V-ECLL and P-ECLL treatments induced in-vivo fat necrosis evident by adipocyte membrane lysis, adipocyte denuclearization, and an acute inflammatory response across a 28-day longitudinal study. However, -1.5 V P-ECLL produced a smaller spatial necrotic effect compared to 5 V V-ECLL. In addition, 5 V V-ECLL produced a comparable necrotic effect to that of -2.5 V and -3.5 V P-ECLL.ConclusionsV-ECLL and P-ECLL at the aforementioned dosimetry parameters both achieved fat necrosis by adipocyte membrane lysis and denuclearization. The -2.5 V and -3.5 V P-ECLL treatments created spatially similar fat necrotic effects when compared to the 5 V V-ECLL treatment. Quantitatively, total charge transfer between dosimetry parameters suggests that -2.5 V P-ECLL and 5 V V-ECLL produce comparable electrochemical reactions. Such findings suggest that a low-voltage closed-loop potentiostat-based system is capable of inducing fat necrosis to a similar extent compared to that of a higher voltage direct current system
    corecore