2,838 research outputs found
T-odd correlations in charged Kl4 decays
We analyse the sensitivity to physics beyond the SM of T-odd correlations in
decays, which do not involve the lepton polarization. We show that
a combined analysis of and decays can lead to new
constraints about CP violation in charged-current interactions,
complementary to those obtained from the transverse muon polarization in
and of comparable accuracy.Comment: 6 pages (LaTeX
Constrained Cluster Parameters from Sunyaev-Zel'dovich Observations
Near-future SZ surveys such as ACT, SPT, APEX, and Planck will find thousands
of galaxy clusters. Multi-frequency arcminute-resolution SZ observations can,
in principle, determine each cluster's gas temperature (T_e), bulk velocity
(v_pec), and optical depth (tau). However, the frequency bands and detector
sensitivity employed by upcoming surveys will generally not be sufficient to
disentangle the degeneracy between these three cluster parameters, even in the
absence of SZ signal contamination from point sources and imperfect primary
microwave background subtraction. Assuming contaminants can be removed, we find
that near-future SZ surveys will be able to constrain well two cluster gas
parameters that are linear combinations of tau*T_e, tau*v_z, and tau*T_e^2.
Because the SZ intensity shift is nearly a linear function of tau*T_e, tau*v_z,
and tau*T_e^2, a correspondence exists between the two effective gas parameters
that SZ surveys can constrain and simple line-of-sight integrals through the
three dimensional cluster. We illustrate the parameter constraints and
correspondence to line-of-sight integrals using 3D Nbody + hydro cluster
simulations and a Markov chain Monte Carlo method. We show that adding an
independent T_e measurement to upcoming SZ data breaks the parameter
degeneracy. The cluster effective velocity thus constrained is approximately
the optical-depth-weighted velocity integrated along the cluster line of sight.
A temperature prior with an error as large as 2 keV still gives bulk velocity
errors < 100 km/sec, even for a more typical cluster with an electron
temperature of 3 keV, for ACT-like SZ observations in the absence of signal
contamination. The Markov chain constraints on v_pec and tau are more
encouraging and likely more accurate than those obtained from Fisher matrices.Comment: 31 pages, 15 figures. Typo corrected; accepted by Ap
Minimally invasive endoscopic therapies for gastro-oesophageal reflux disease
The prevalence of the gastro-oesophageal reflux disease (GORD) in the western world is increasing. Uncontrolled GORD can lead to harmful long-term sequela such as oesophagitis, stricture formation, Barrett's oesophagus and oesophageal adenocarcinoma. Moreover, GORD has been shown to negatively impact quality of life. The current treatment paradigm for GORD consists of lifestyle modification, pharmacological control of gastric acid secretion or antireflux surgery. In recent years, several minimally invasive antireflux endoscopic therapies (ARET) have been developed which may play a role in bridging the unmet therapeutic gap between the medical and surgical treatment options. To ensure optimal patient outcomes following ARET, considered patient selection is crucial, which requires a mechanistic understanding of individual ARET options. Here, we will discuss the differences between ARETs along with an overview of the current evidence base. We also outline future research priorities that will help refine the future role of ARET
Shock Breakout in Core-Collapse Supernovae and its Neutrino Signature
(Abridged) We present results from dynamical models of core-collapse
supernovae in one spatial dimension, employing a newly-developed Boltzmann
neutrino radiation transport algorithm, coupled to Lagrangean hydrodynamics and
a consistent high-density nuclear equation of state. We focus on shock breakout
and its neutrino signature and follow the dynamical evolution of the cores of
11 M_sun, 15 M_sun, and 20 M_sun progenitors through collapse and the first 250
milliseconds after bounce. We examine the effects on the emergent neutrino
spectra, light curves, and mix of species of artificial opacity changes, the
number of energy groups, the weak magnetism/recoil corrections, nucleon-nucleon
bremsstrahlung, neutrino-electron scattering, and the compressibility of
nuclear matter. Furthermore, we present the first high-resolution look at the
angular distribution of the neutrino radiation field both in the
semi-transparent regime and at large radii and explore the accuracy with which
our tangent-ray method tracks the free propagation of a pulse of radiation in a
near vacuum. Finally, we fold the emergent neutrino spectra with the
efficiencies and detection processes for a selection of modern underground
neutrino observatories and argue that the prompt electron-neutrino breakout
burst from the next galactic supernova is in principle observable and usefully
diagnostic of fundamental collapse/supernova behavior. Though we are not in
this study focusing on the supernova mechanism per se, our simulations support
the theoretical conclusion (already reached by others) that spherical (1D)
supernovae do not explode when good physics and transport methods are employed.Comment: 16 emulateapj pages, plus 24 postscript figures, accepted to The
Astrophysical Journal; text revised; neutrino oscillation section expanded;
Fig. 22 correcte
Azimuthal Correlation in Lepton-Hadron Scattering via Charged Weak-Current Processes
We consider the azimuthal correlation of the final-state particles in charged
weak-current processes. This correlation provides a test of perturbative
quantum chromodynamics. The azimuthal asymmetry is large in the semi-inclusive
processes in which we identify a final-state hadron, say, a charged pion
compared to that in the inclusive processes in which we do not identify
final-state particles and use only the calorimetric information. In
semi-inclusive processes the azimuthal asymmetry is more conspicuous when the
incident lepton is an antineutrino or a positron than when the incident lepton
is a neutrino or an electron. We analyze all the possible charged weak-current
processes and study the quantitative aspects of each process. We also compare
this result to the ep scattering with a photon exchange.Comment: 25 pages, 2 Postscript figures, uses RevTeX, fixes.st
Effects of Chromate and Chromate Conversion Coatings on Corrosion of Aluminum Alloy 2024-T3
Various effects of chromate conversion coatings (CCCs) and chromate in solution on the corrosion of AA2024-T3 and pure Al are studied in this work. Raman spectroscopy was used to investigate the nature of chromate in CCCs through a comparison with the spectra of known standards and artificial Cr(III)/Cr(VI) mixed oxides. Chromate was shown to be released from CCCs and to migrate to and protect a nearby, uncoated area in the artificial scratch cell. However, experiments investigating the effect of chromate in solution on anodic dissolution kinetics under potentiostatic control indicated that large chromate concentrations were needed to have an effect.This work was supported by Major H. DeLong at the United States Air Force Office of Scientific Research under contracts F49620-96-1-0479 and F49620-96-0042
Z decays into light gluinos: a calculation based on unitarity
The Z boson can decay to a pair of light gluinos through loop-mediated
processes. Based on unitarity of the S-matrix, the imaginary part of the decay
amplitude is computed in the presence of a light bottom squark. This imaginary
part can provide useful information on the full amplitude. Implications are
discussed for a recently proposed light gluino and light bottom squark
scenario.Comment: 19 pages, LaTeX, 3 figures, submitted to Phys. Rev.
Developments in Rare Kaon Decay Physics
We review the current status of the field of rare kaon decays. The study of
rare kaon decays has played a key role in the development of the standard
model, and the field continues to have significant impact. The two areas of
greatest import are the search for physics beyond the standard model and the
determination of fundamental standard-model parameters. Due to the exquisite
sensitivity of rare kaon decay experiments, searches for new physics can probe
very high mass scales. Studies of the k->pnn modes in particular, where the
first event has recently been seen, will permit tests of the standard-model
picture of quark mixing and CP violation.Comment: One major revision to the text is the branching ratio of KL->ppg,
based on a new result from KTeV. Several references were updated, with minor
modifications to the text. A total of 48 pages, with 28 figures, in LaTeX; to
be published in the Annual Review of Nuclear and Particle Science, Vol. 50,
December 200
- âŠ