6 research outputs found

    Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    Get PDF
    Background So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels.Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from similar to 60 000 individuals in the discovery stage and similar to 90 000 samples in the replication stage.Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene.Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity (vol 50, pg 26, 2017)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper

    Publisher Correction:Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    No full text
    In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article

    Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity (vol 50, pg 26, 2018)

    No full text
    A.P.R. was supported by R01DK089256. A.W.H. is supported by an NHMRC Practitioner Fellowship (APP1103329). A.K.M. received funding from NIH/NIDDK K01DK107836. A.T.H. is a Wellcome Trust Senior Investigator (WT098395) and an NIH Research Senior Investigator. A.P.M. is a Wellcome Trust Senior Fellow in Basic Biomedical Science (WT098017). A.R.W. is supported by the European Research Council (SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC). A.U.J. is supported by the American Heart Association (13POST16500011) and the NIH (R01DK089256, R01DK101855, K99HL130580). B.K. and E.K.S. were supported by the Doris Duke Medical Foundation, the NIH (R01DK106621), the University of Michigan Internal Medicine Department, Division of Gastroenterology, the University of Michigan Biological Sciences Scholars Program and the Central Society for Clinical Research. C.J.W. is supported by the NIH (HL094535, HL109946). D.J.L. is supported by R01HG008983 and R21DA040177. D.R.W. is supported by the Danish Diabetes Academy, which is funded by the Novo Nordisk Foundation. V. Salomaa has been supported by the Finnish Foundation for Cardiovascular Research. F.W.A. is supported by Dekker scholarship–Junior Staff Member 2014T001 Netherlands Heart Foundation and the UCL Hospitals NIHR Biomedical Research Centre. F.D. is supported by the UK MRC (MC_UU_12013/1-9). G.C.-P. received scholarship support from the University of Queensland and QIMR Berghofer. G.L. is funded by the Montreal Heart Institute Foundation and the Canada Research Chair program. H.Y. and T.M.F. are supported by the European Research Council (323195; SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC). I.M.H. is supported by BMBF (01ER1206) and BMBF (01ER1507m), the NIH and the Max Planck Society. J. Haessler was supported by NHLBI R21HL121422. J.N.H. is supported by NIH R01DK075787. K.E.N. was supported by the NIH (R01DK089256, R01HD057194, U01HG007416, R01DK101855) and the American Heart Association (13GRNT16490017). M.A.R. is supported by the Nuffield Department of Clinical Medicine Award, Clarendon Scholarship. M.I.M. is a Wellcome Trust Senior Investigator (WT098381) and an NIH Research Senior Investigator. M.D. is supported by the NCI (R25CA94880, P30CA008748). P.R.N. is supported by the European Research Council (AdG; 293574), the Research Council of Norway, the University of Bergen, the KG Jebsen Foundation and the Helse Vest, Norwegian Diabetes Association. P.T.E. is supported by the NIH (1R01HL092577, R01HL128914, K24HL105780), by an Established Investigator Award from the American Heart Association (13EIA14220013) and by the Foundation Leducq (14CVD01). P.L.A. was supported by NHLBI R21HL121422 and R01DK089256. P.L.H. is supported by the NIH (NS33335, HL57818). R.S.F. is supported by the NIH (T32GM096911). R.J.F.L. is supported by the NIH (R01DK110113, U01HG007417, R01DK101855, R01DK107786). S.A.L. is supported by the NIH (K23HL114724) and a Doris Duke Charitable Foundation Clinical Scientist Development Award. T.D.S. holds an ERC Advanced Principal Investigator award. T.A.M. is supported by an NHMRC Fellowship (APP1042255). T.H.P. received Lundbeck Foundation and Benzon Foundation support. V.T. is supported by a postdoctoral fellowship from the Canadian Institutes of Health Research (CIHR). Z.K. is supported by the Leenaards Foundation, the Swiss National Science Foundation (31003A-143914) and SystemsX.ch (51RTP0_151019). Part of this work was conducted using the UK Biobank resource (project numbers 1251 and 9072)

    Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk

    No full text

    Rare and low-frequency coding variants alter human adult height

    No full text
    corecore