37 research outputs found

    Modular PEM Fuel Cell SCADA & Simulator System

    Get PDF
    The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator) system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts

    Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework

    Get PDF
    Current climate crisis makes the need for reducing carbon emissions more than evident. For this reason, renewable energy sources are expected to play a fundamental role. However, these sources are not controllable, but depend on the weather conditions. Therefore, green hydrogen (hydrogen produced from water electrolysis using renewable energies) is emerging as the key energy carrier to solve this problem. Although different properties of hydrogen have been widely studied, some key aspects such as the water and energy footprint, as well as the technological development and the regulatory framework of green hydrogen in different parts of the world have not been analysed in depth. This work performs a data-driven analysis of these three pillars: water and energy footprint, technological maturity, and regulatory framework of green hydrogen technology. Results will allow the evaluation of green hydrogen deployment, both the current situation and expectations. Regarding the water footprint, this is lower than that of other fossil fuels and competitive with other types of hydrogen, while the energy footprint is higher than that of other fuels. Additionally, results show that technological and regulatory framework for hydrogen is not fully developed and there is a great inequality in green hydrogen legislation in different regions of the world.This research was funded by the Spanish Government, grant (1) Ref: PID2020-116616RBC31, and grant (2) Ref: RED2022-134588-T REDGENERA

    The Challenge of Digital Transition in Engineering. A Solution Made from a European Collaborative Network of Remote Laboratories Based on Renewable Energies Technology

    Get PDF
    Society currently faces two crucial challenges: digital transition and energy transition. Educative innovation plays a key role in this challenging scenario, particularly engineering careers, where laboratory practices are as important as theoretical classes. This paper presents a standardized training platform supported by five European universities which include a remote laboratory experience. Each university is responsible for developing a training module under the guidance provided by the responsible entity (University of Huelva, Spain). For this purpose, the University of Huelva has implemented a remote laboratory based on a supercapacitor power bank. The rest of the universities have selected any other renewable source and have replicated the information and communications technology (ICT) infrastructure. The result is a European network materialized on a homogenized platform where teachers and students can find all the teaching materials (theory and practice) to train and to be trained in renewable energy matters in the new digital era.This research was funded by Erasmus+ Programme, grant number Ref. 2020-1-IT02-KA226-HE-095424 RE-OPEN project; ERASMUS+ Programme 2020-KA2; and the APC was funded by Ref. 2020-1-IT02-KA226-HE-095424 RE-OPEN project, founded by ERASMUS+ Programme 2020-KA2

    Fuzzy logic-based energy management system for grid-connected residential DC microgrids with multi-stack fuel cell systems: A multi-objective approach

    Get PDF
    Hybrid energy storage systems (HESS) are considered for use in renewable residential DC microgrids. This architecture is shown as a technically feasible solution to deal with the stochasticity of renewable energy sources, however, the complexity of its design and management increases inexorably. To address this problem, this paper proposes a fuzzy logic-based energy management system (EMS) for use in grid-connected residential DC microgrids with HESS. It is a hydrogen-based HESS, composed of batteries and multi-stack fuel cell system. The proposed EMS is based on a multivariable and multistage fuzzy logic controller, specially designed to cope with a multi-objective problem whose solution increases the microgrid performance in terms of efficiency, operating costs, and lifespan of the HESS. The proposed EMS considers the power balance in the microgrid and its prediction, the performance and degradation of its subsystems, as well as the main electricity grid costs. This article assesses the performance of the developed EMS with respect to three reference EMSs present in the literature: the widely used dual-band hysteresis and two based on multi-objective model predictive control. Simulation results show an increase in the performance of the microgrid from a technical and economic point of view.Thisresearchwasfundedby‘‘H2Integration&Control.IntegrationandControlofahydrogen-basedpilotplantinresidentialapplicationsforenergysupply’’SpanishGovernment,grant Ref:PID2020-116616RB-C31’’,‘‘SALTES:SmartgridwithreconfigurableArchitecturefortestingcontroLTechniquesandEnergy Storagepriority’’byAndalusianRegionalProgramofR+D+i,grant Ref:P20-00730,andbytheproject‘‘Thegreenhydrogenvector. Residentialandmobilityapplication’’,approvedinthecallfor researchprojectsoftheCepsaFoundationChairoftheUniversity ofHuelva.Fundingforopenaccesscharge:UniversidaddeHuelva /CBUA

    Generalized, Complete and Accurate Modeling of Non-Ideal Push–Pull Converters for Power System Analysis and Control

    Get PDF
    Power converters are a basic element for the control and design of any power electronic system. Among the many available topologies, the push–pull converter is widely used due to its versatility, safety and efficiency. For its correct analysis, sizing, simulation and control, models that meet the characteristics of generality, accuracy and simplicity are required, especially if its control is to be optimized by means of some analytical technique. This requires models that consider the practical non-idealities intrinsic to the converter, as well as being intuitive and easy to handle analytically in a control loop. In general, the models reviewed in the scientific literature adopt simplifications in their definition that are detrimental to their accuracy. In response to the posed problem, this work presents a generalized, complete, accurate and versatile model of real (non-ideal) push–pull converters, ideal for the analysis, simulation, and control of power systems. Following the premise of general and complete converters, the proposed model includes all the practical non-idealities of the converter elements, and it is accurate because it faithfully reflects its dynamics. Furthermore, the model is versatile, as its state space formulation allows for its easy adaptability to the converter operating conditions (voltage, current and temperature) for each sampling time. Also, the model is excellent for use in model-based control techniques, as well as for making very accurate simulators. The behavior of the developed model has been contrasted with a real push–pull converter, as well as with reference models present in the scientific literature for both dynamic and steady-state response tests. The results show excellent performance in all the studied cases, with behavior faithful to the real converter and with relative errors that are much lower than those obtained for the reference models. It follows that the model behaves like a digital twin of a real push–pull converter.This work is a contribution of the two following projects: “H2Integration&Control. Integration and Control of a hydrogen-based pilot plant in residential applications for energy supply”, Ref. PID2020-116616RB-C31 supported by the Spanish State Program of R+D+I Oriented to the Challenges of Society; and “SALTES: Smartgrid with reconfigurable Architecture for testing controL Techniques and Energy Storage priority contaminant waste”, Ref. P20-00730 supported by Andalusian Regional Program of R+D+I

    The Economic Impact and Carbon Footprint Dependence of Energy Management Strategies in Hydrogen-Based Microgrids

    Get PDF
    This paper presents an economic impact analysis and carbon footprint study of a hydrogen-based microgrid. The economic impact is evaluated with respect to investment costs, operation and maintenance (O&M) costs, as well as savings, taking into account two different energy management strategies (EMSs): a hydrogen-based priority strategy and a battery-based priority strategy. The research was carried out in a real microgrid located at the University of Huelva, in southwestern Spain. The results (which can be extrapolated to microgrids with a similar architecture) show that, although both strategies have the same initial investment costs (EUR 52,339.78), at the end of the microgrid lifespan, the hydrogen-based strategy requires higher replacement costs (EUR 74,177.4 vs. 17,537.88) and operation and maintenance costs (EUR 35,254.03 vs. 34,877.08), however, it provides better annual savings (EUR 36,753.05 vs. 36,282.58) and a lower carbon footprint (98.15% vs. 95.73% CO2 savings) than the battery-based strategy. Furthermore, in a scenario where CO2 emission prices are increasing, the hydrogen-based strategy will bring even higher annual cost savings in the coming years.This research was funded by the Spanish Government, grant (1) Ref: PID2020-116616RBC31 and grant (2) Ref: RED2022-134588-T REDGENERA

    The Gender Gap in STEM Careers: An Inter-Regional and Transgenerational Experimental Study to Identify the Low Presence of Women

    Get PDF
    Currently, the number of job offers in STEM careers (Science, Technology, Engineering and Mathematics) is growing up, but by contrast, the number of graduates in these fields is decreasing, particularly women graduates. Consequently, if we do not promote the training of women in STEM careers, the gender gap, far from narrowing, will continue to widen. This paper presents the research carried out in the ALAS project (Accompanying girLs towArds STEM careers), which consists of an experimental analysis based on a multi-model study to discover the possible causes of this low participation of women in STEM fields. The models used are the (1) expectancy–value theory of motivation, (2) social role theory, and (3) gender stereotypes theory. Additionally, participatory workshops have been carried out, with the aim of capturing the students’ reactions when they are introduced to STEM practices. The surveyed target groups range from primary education groups up to university graduates and enterprise employees, including both students and teachers. The obtained results show that there are still social patterns that make young people differentiate certain types of activities based on gender, especially at secondary school age. Nevertheless, the findings reveal that beyond the three studied models, a key factor in young people’s decision to be enrolled in STEM careers is their educational environment.This research was funded by Ref:15/3ACT/21 and the APC was funded by Ref: 2020-1-IT02-KA226-HE-095424

    Batteries and Hydrogen Storage: Technical Analysis and Commercial Revision to Select the Best Option

    Get PDF
    : This paper aims to analyse two energy storage methods—batteries and hydrogen storage technologies—that in some cases are treated as complementary technologies, but in other ones they are considered opposed technologies. A detailed technical description of each technology will allow to understand the evolution of batteries and hydrogen storage technologies: batteries looking for higher energy capacity and lower maintenance, while hydrogen storage technologies pursuing better volumetric and gravimetric densities. Additionally, as energy storage systems, a mathematical model is required to know the state of charge of the system. For this purpose, a mathematical model is proposed for conventional batteries, for compressed hydrogen tanks, for liquid hydrogen storage and for metal hydride tanks, which makes it possible to integrate energy storage systems into management strategies that aim to solve the energy balance in plants based on hybrid energy storage systems. From the technical point of view, most batteries are easier to operate and do not require special operating conditions, while hydrogen storage methods are currently functioning at the two extremes (high temperatures for metal and complex hydrides and low temperatures for liquid hydrogen or physisorption). Additionally, the technical comparison made in this paper also includes research trends and future possibilities in an attempt to help plan future policiesThis research was funded by 1) Spanish Government, grant Ref: PID2020-116616RB-C31, 2) Andalusian Regional Program of R+D+i, grant Ref: P20-00730, and 3) FEDER-University of Huelva 2018, grant Ref: UHU-125931

    Integration of air-cooled multi-stack polymer electrolyte fuel cell systems into renewable microgrids

    Get PDF
    Currently, there is a growing interest in increasing the power range of air-cooled fuel cells (ACFCs), as they are cheaper, easier to use and maintain than water-cooled fuel cells (WCFCs). However, air-cooled stacks are only available up to medium power (<10 kW). Therefore, a good solution may be the development of ACFCs consisting of several stacks until the required power output is reached. This is the concept of air-cooled multi-stack fuel cell (AC-MSFC). The objective of this work is to develop a turnkey solution for the integration of AC-MSFCs in renewable microgrids, specifically those with high-voltage DC (HVDC) bus. This is challenging because the AC-MSFCs must operate in the microgrid as a single ACFC with adjustable power, depending on the number of stacks in operation. To achieve this, the necessary power converter (ACFCs operate at low voltages, so high conversion rates are required) and control loops must be developed. Unlike most designs in the literature, the proposed solution is compact, forming a system (AC-MSFCS) with a single input (hydrogen) and a single output (high voltage regulated power or voltage) that can be easily integrated into any microgrid and easily scalable depending on the power required. The developed AC-MSFCS integrates stacks, balance of plant, data acquisition and instrumentation, power converters and local controllers. In addition, a virtual instrument (VI) has been developed which, connected to the energy management system (EMS) of the microgrid, allows monitoring of the entire AC-MSFCS (operating temperature, purging, cell voltage monitoring for degradation evaluation, stacks operating point control and alarm and event management), as well as serving as a user interface. This allows the EMS to know the degradation of each stack and to carry out energy distribution strategies or specific maintenance actions, which improves efficiency, lifespan and, of course, saves costs. The experimental results have been excellent in terms of the correct operation of the developed AC-MSFCS. Likewise, the accumulated degradation of the stacks was quantified, showing cells with a degradation of >80%. The excellent electrical and thermal performance of the developed power converter was also validated, which allowed the correct and efficient supply of regulated power (average efficiency above 90%) to the HVDC bus, according to the power setpoint defined by the EMS of the microgrid.This research was funded by “H2Integration&Control. Integration and Control of a hydrogen-based pilot plant in residential applications for energy supply” Spanish Government, grant Ref: PID2020-116616RBC31,”; and “SALTES: Smartgrid with reconfigurable Architecture for testing controL Techniques and Energy Storage priority” by Andalusian Regional Program of R+D+, grant Ref: P20-00730

    Hydrogen-powered refrigeration system for environmentally friendly transport and delivery in the food supply chain

    Get PDF
    Urban population and the trend towards online commerce leads to an increase in delivery solution in cities. The growth of the transport sector is very harmful to the environment, being responsible for approximately 40% of greenhouse gas emissions in the European Union. The problem is aggravated when transporting perishable foodstuffs, as the vehicle propulsion engine (VPE) must power not only the vehicle but also the refrigeration unit. This means that the VPE must be running continuously, both on the road and stationary (during delivery), as the cold chain must be preserved. The result is costly (high fuel consumption) and harmful to the environment. At present, refrigerated transport does not support full-electric solutions, due to the high energy consumption required, which motivates the work presented in this article. It presents a turnkey solution of a hydrogenpowered refrigeration system (HPRS) to be integrated into standard light trucks and vans for short-distance food transport and delivery. The proposed solution combines an air-cooled polymer electrolyte membrane fuel cell (PEMFC), a lithium-ion battery and low-weight pressurised hydrogen cylinders to minimise cost and increase autonomy and energy density. In addition, for its implementation and integration, all the acquisition, power and control electronics necessary for its correct management have been developed. Similarly, an energy management system (EMS) has been developed to ensure continuity and safety in the operation of the electrical system during the working day, while maximizing both the available output power and lifetime of the PEMFC. Experimental results on a real refrigerated light truck provide more than 4 h of autonomy in intensive intercity driving profiles, which can be increased, if necessary, by simply increasing the pressure of the stored hydrogen from the current 200 bar to whatever is required. The correct operation of the entire HPRS has been experimentally validated in terms of functionality, autonomy and safety; with fuel savings of more than 10% and more than 3650 kg of CO2/ year avoided.This work is a contribution of the two following Projects: “H2Integration& Control. Integration and Control of a hydrogen-based pilot plant in residential applications for energy supply”, Ref. PID2020-116616RB-C31 supported by the Spanish State Program of R + D + I Oriented to the Challenges of Society; and “SALTES: Smartgrid with reconfigurable Architecture for testing controL Techniques and Energy Storage priority contaminant waste”, Ref. P20-00730 supported by Andalusian Regional Program of R + D + I. Funding for open access charge: Universidad de Huelva/CBUA
    corecore