1,149 research outputs found

    The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    Get PDF
    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23m), Medium (12m) and Small (4m) sized telescopes spread over an area of order ~km2^2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.Comment: 6 pages. To appear in the proceedings of the Adapting to the Atmosphere conference 201

    BeppoSAX observation of the X-ray binary pulsar Vela X-1

    Get PDF
    We report on the spectral (pulse averaged) and timing analysis of the ~ 20 ksec observation of the X-ray binary pulsar Vela X-1 performed during the BeppoSAX Science Verification Phase. The source was observed in two different intensity states: the low state is probably due to an erratic intensity dip and shows a decrease of a factor ~ 2 in intensity, and a factor 10 in Nh. We have not been able to fit the 2-100 keV continuum spectrum with the standard (for an X--ray pulsar) power law modified by a high energy cutoff because of the flattening of the spectrum in ~ 10-30 keV. The timing analysis confirms previous results: the pulse profile changes from a five-peak structure for energies less than 15 keV, to a simpler two-peak shape at higher energies. The Fourier analysis shows a very complex harmonic component: up to 23 harmonics are clearly visible in the power spectrum, with a dominant first harmonic for low energy data, and a second one as the more prominent for energies greater than 15 keV. The aperiodic component in the Vela X-1 power spectrum presents a knee at about 1 Hz. The pulse period, corrected for binary motion, is 283.206 +/- 0.001 sec.Comment: 5 pages, 4 PostScript figure, uses aipproc.sty, to appear in Proceedings of Fourth Compton Symposiu

    Cyclotron lines in X-ray pulsars as a probe of relativistic plasmas in superstrong magnetic fields

    Get PDF
    The systematic search for the presence of cyclotron lines in the spectra of accreting X-ray pulsars is being carried on with the BeppoSAX satellite since the beginning of the mission. These highly successful observations allowed the detection of cyclotron lines in many of the accreting X-ray pulsars observed. Some correlations between the different measured parameters were found. We present these correlations and discuss them in the framework of the current theoretical scenario for the X-ray emission from these sources.Comment: 5 pages, 2 figures, uses aipproc.sty, to appear in Proceeding of Fifth Compton Symposiu
    corecore