36 research outputs found

    First-Order Query Evaluation with Cardinality Conditions

    Full text link
    We study an extension of first-order logic that allows to express cardinality conditions in a similar way as SQL's COUNT operator. The corresponding logic FOC(P) was introduced by Kuske and Schweikardt (LICS'17), who showed that query evaluation for this logic is fixed-parameter tractable on classes of structures (or databases) of bounded degree. In the present paper, we first show that the fixed-parameter tractability of FOC(P) cannot even be generalised to very simple classes of structures of unbounded degree such as unranked trees or strings with a linear order relation. Then we identify a fragment FOC1(P) of FOC(P) which is still sufficiently strong to express standard applications of SQL's COUNT operator. Our main result shows that query evaluation for FOC1(P) is fixed-parameter tractable with almost linear running time on nowhere dense classes of structures. As a corollary, we also obtain a fixed-parameter tractable algorithm for counting the number of tuples satisfying a query over nowhere dense classes of structures

    Answering Conjunctive Queries under Updates

    Full text link
    We consider the task of enumerating and counting answers to kk-ary conjunctive queries against relational databases that may be updated by inserting or deleting tuples. We exhibit a new notion of q-hierarchical conjunctive queries and show that these can be maintained efficiently in the following sense. During a linear time preprocessing phase, we can build a data structure that enables constant delay enumeration of the query results; and when the database is updated, we can update the data structure and restart the enumeration phase within constant time. For the special case of self-join free conjunctive queries we obtain a dichotomy: if a query is not q-hierarchical, then query enumeration with sublinear∗^\ast delay and sublinear update time (and arbitrary preprocessing time) is impossible. For answering Boolean conjunctive queries and for the more general problem of counting the number of solutions of k-ary queries we obtain complete dichotomies: if the query's homomorphic core is q-hierarchical, then size of the the query result can be computed in linear time and maintained with constant update time. Otherwise, the size of the query result cannot be maintained with sublinear update time. All our lower bounds rely on the OMv-conjecture, a conjecture on the hardness of online matrix-vector multiplication that has recently emerged in the field of fine-grained complexity to characterise the hardness of dynamic problems. The lower bound for the counting problem additionally relies on the orthogonal vectors conjecture, which in turn is implied by the strong exponential time hypothesis. ∗)^\ast) By sublinear we mean O(n1−ε)O(n^{1-\varepsilon}) for some ε>0\varepsilon>0, where nn is the size of the active domain of the current database

    Synchronization of organ pipes: experimental observations and modeling

    Full text link
    We report measurements on the synchronization properties of organ pipes. First, we investigate influence of an external acoustical signal from a loudspeaker on the sound of an organ pipe. Second, the mutual influence of two pipes with different pitch is analyzed. In analogy to the externally driven, or mutually coupled self-sustained oscillators, one observes a frequency locking, which can be explained by synchronization theory. Further, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad ``hump'' structure, not found for coupled oscillators. This indicates a complex coupling of the two organ pipes leading to nonlinear beat phenomena.Comment: 24 pages, 10 Figures, fully revised, 4 big figures separate in jpeg format. accepted for Journal of the Acoustical Society of Americ

    Answering Non-Monotonic Queries in Relational Data Exchange

    Full text link
    Relational data exchange is the problem of translating relational data from a source schema into a target schema, according to a specification of the relationship between the source data and the target data. One of the basic issues is how to answer queries that are posed against target data. While consensus has been reached on the definitive semantics for monotonic queries, this issue turned out to be considerably more difficult for non-monotonic queries. Several semantics for non-monotonic queries have been proposed in the past few years. This article proposes a new semantics for non-monotonic queries, called the GCWA*-semantics. It is inspired by semantics from the area of deductive databases. We show that the GCWA*-semantics coincides with the standard open world semantics on monotonic queries, and we further explore the (data) complexity of evaluating non-monotonic queries under the GCWA*-semantics. In particular, we introduce a class of schema mappings for which universal queries can be evaluated under the GCWA*-semantics in polynomial time (data complexity) on the core of the universal solutions.Comment: 55 pages, 3 figure

    Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    No full text
    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study

    Campagne Rapanui (et transit Manrap): Les frontieres et les deformations de la microplaque Rapanui

    No full text
    The Rapanui Expedition consisted of three legs. The first leg (named Manrap) was a transit between Manzanillo, Mexico and Easter Island, Chile, the second leg (Rapanui 1) consisted of work on the Rapanui (Easter) microplate and was the primary workload of the expedition, and the third leg (Rapanui 2) was a transit from Easter Island, Chile to Tahiti, French Polynesia, and realized additional work on the Rapanui Microplate, and a fuel stop at Hao, French Polynesia. Instrumentation on all legs consisted of standard geophysical tools used on the N/O Jean Charcot
    corecore