2 research outputs found
MRI Contrast-enhancement with superparamagnetic iron oxide nanoparticles amplify macrophage foam cell apoptosis in human and murine atherosclerosis
(Ultra) Small superparamagnetic iron oxide nanoparticles, (U)SPIO, are widely used as magnetic resonance imaging contrast media and assumed to be safe for clinical applications in cardiovascular disease. As safety tests largely relied on normolipidemic models, not fully representative of the clinical setting, we investigated the impact of (U)SPIOs on disease-relevant endpoints in hyperlipidemic models of atherosclerosis.RAW264.7 foam cells, exposed in vitro to Ferumoxide (dextran-coated SPIO), Ferumoxtran (dextran-coated USPIO), or Ferumoxytol (carboxymethyl dextran-coated USPIO) (all 1 mg Fe/ml) showed increased apoptosis and ROS accumulation for Ferumoxide and Ferumoxtran, whereas Ferumoxytol was tolerated well. Pro-apoptotic (TUNEL+) and pro-oxidant activity of Ferumoxide (0.3 mg Fe/kg) and Ferumoxtran (1 mg Fe/kg) were confirmed in plaque, spleen, and liver of hyperlipidemic ApoE-/- (n = 9/group) and LDLR-/- (n = 9-16/group) mice that had received single IV injections compared to saline-treated controls. Again, Ferumoxytol treatment (1 mg Fe/kg) failed to induce apoptosis or oxidative stress in these tissues. Concomitant antioxidant treatment (EUK-8/EUK-134) largely prevented these effects in vitro (-68%, P Ferumoxide and Ferumoxtran, but not Ferumoxytol, induced apoptosis of lipid-laden macrophages in human and murine atherosclerosis, potentially impacting disease progression in patients with advanced atherosclerosis.Biopharmaceutic
Complement alternative pathway activation in human nonalcoholic steatohepatitis
The innate immune system plays a major role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Recently we reported complement activation in human NASH. However, it remained unclear whether the alternative pathway of complement, which amplifies C3 activation and which is frequently associated with pathological complement activation leading to disease, was involved. Here, alternative pathway components were investigated in liver biopsies of obese subjects with healthy livers (n = 10) or with NASH (n = 12) using quantitative PCR, Western blotting, and immunofluorescence staining. Properdin accumulated in areas where neutrophils surrounded steatotic hepatocytes, and colocalized with the C3 activation product C3c. C3 activation status as expressed by the C3c/native C3 ratio was 2.6-fold higher (p<0.01) in subjects with NASH despite reduced native C3 concentrations (0.94+/-0.12 vs. 0.57+/-0.09; p<0.01). Hepatic properdin levels positively correlated with levels of C3c (rs = 0.69; p<0.05) and C3c/C3 activation ratio (rs = 0.59; p<0.05). C3c, C3 activation status (C3c/C3 ratio) and properdin levels increased with higher lobular inflammation scores as determined according to the Kleiner classification (C3c: p<0.01, C3c/C3 ratio: p<0.05, properdin: p<0.05). Hepatic mRNA expression of factor B and factor D did not differ between subjects with healthy livers and subjects with NASH (factor B: 1.00+/-0.19 vs. 0.71+/-0.07, p = 0.26; factor D: 1.00+/-0.21 vs. 0.66+/-0.14, p = 0.29;). Hepatic mRNA and protein levels of Decay Accelerating Factor tended to be increased in subjects with NASH (mRNA: 1.00+/-0.14 vs. 2.37+/-0.72; p = 0.22; protein: 0.51+/-0.11 vs. 1.97+/-0.67; p = 0.28). In contrast, factor H mRNA was downregulated in patients with NASH (1.00+/-0.09 vs. 0.71+/-0.06; p<0.05) and a similar trend was observed with hepatic protein levels (1.12+/-0.16 vs. 0.78+/-0.07; p = 0.08). Collectively, these data suggest a role for alternative pathway activation in driving hepatic inflammation in NASH. Therefore, alternative pathway factors may be considered attractive targets for treating NASH by inhibiting complement activation