1,570 research outputs found
Excluded-Volume Effects in Tethered-Particle Experiments: Bead Size Matters
The tethered-particle method is a single-molecule technique that has been
used to explore the dynamics of a variety of macromolecules of biological
interest. We give a theoretical analysis of the particle motions in such
experiments. Our analysis reveals that the proximity of the tethered bead to a
nearby surface (the microscope slide) gives rise to a volume-exclusion effect,
resulting in an entropic force on the molecule. This force stretches the
molecule, changing its statistical properties. In particular, the proximity of
bead and surface brings about intriguing scaling relations between key
observables (statistical moments of the bead) and parameters such as the bead
size and contour length of the molecule. We present both approximate analytic
solutions and numerical results for these effects in both flexible and
semiflexible tethers. Finally, our results give a precise,
experimentally-testable prediction for the probability distribution of the
distance between the polymer attachment point and the center of the mobile
bead.Comment: 4 pages, 3 figure
Coherent Control for a Two-level System Coupled to Phonons
The interband polarizations induced by two phase-locked pulses in a
semiconductor show strong interference effects depending on the time tau_1
separating the pulses. The four-wave mixing signal diffracted from a third
pulse delayed by tau is coherently controlled by tuning tau_1. The four-wave
mixing response is evaluated exactly for a two-level system coupled to a single
LO phonon. In the weak coupling regime it shows oscillations with the phonon
frequency which turn into sharp peaks at multiples of the phonon period for a
larger coupling strength. Destructive interferences between the two
phase-locked pulses produce a splitting of the phonon peaks into a doublet. For
fixed tau but varying tau_1 the signal shows rapid oscillations at the
interband-transition frequency, whose amplitude exhibits bursts at multiples of
the phonon period.Comment: 4 pages, 4 figures, RevTex, content change
Effects of thermal fluctuation and the receptor-receptor interaction in bacterial chemotactic signalling and adaptation
Bacterial chemotaxis is controlled by the conformational changes of the
receptors, in response to the change of the ambient chemical concentration. In
a statistical mechanical approach, the signalling due to the conformational
changes is a thermodynamic average quantity, dependent on the temperature and
the total energy of the system, including both ligand-receptor interaction and
receptor-receptor interaction. This physical theory suggests to biology a new
understanding of cooperation in ligand binding and receptor signalling
problems. How much experimental support of this approach can be obtained from
the currently available data? What are the parameter values? What is the
practical information for experiments? Here we make comparisons between the
theory and recent experimental results. Although currently comparisons can only
be semi-quantitative or qualitative, consistency is clearly shown. The theory
also helps to sort a variety of data.Comment: 26 pages, revtex. Journal version. Analysis on another set of data on
adaptation time is adde
From sensorimotor dependencies to perceptual practices: making enactivism social
Proponents of enactivism should be interested in exploring what notion of action best captures the type of action-perception link that the view proposes, such that it covers all the aspects in which our doings constitute and are constituted by our perceiving. This article proposes and defends the thesis that the notion of sensorimotor dependencies is insufficient to account for the reality of human perception, and that the central enactive notion should be that of perceptual practices. Sensorimotor enactivism is insufficient because it has no traction on socially dependent perceptions, which are essential to the role and significance of perception in our lives. Since the social dimension is a central desideratum in a theory of human perception, enactivism needs a notion that accounts for such an aspect. This article sketches the main features of the Wittgenstein-inspired notion of perceptual practices as the central notion to understand perception. Perception, I claim, is properly understood as woven into a type of social practices that includes food, dance, dress, music, etc. More specifically, perceptual practices are the enactment of culturally structured, normatively rich techniques of commerce of meaningful multi- and inter-modal perceptible material. I argue that perceptual practices explain three central features of socially dependent perception: attentional focus, aspects’ saliency, and modal-specific harmony-like relations
Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure
Measurements of thermal activation are made in a superconducting, niobium
Persistent-Current (PC) qubit structure, which has two stable classical states
of equal and opposite circulating current. The magnetization signal is read out
by ramping the bias current of a DC SQUID. This ramping causes time-ordered
measurements of the two states, where measurement of one state occurs before
the other. This time-ordering results in an effective measurement time, which
can be used to probe the thermal activation rate between the two states.
Fitting the magnetization signal as a function of temperature and ramp time
allows one to estimate a quality factor of 10^6 for our devices, a value
favorable for the observation of long quantum coherence times at lower
temperatures.Comment: 14 pages, 4 figure
Increased accuracy of ligand sensing by receptor internalization
Many types of cells can sense external ligand concentrations with
cell-surface receptors at extremely high accuracy. Interestingly, ligand-bound
receptors are often internalized, a process also known as receptor-mediated
endocytosis. While internalization is involved in a vast number of important
functions for the life of a cell, it was recently also suggested to increase
the accuracy of sensing ligand as the overcounting of the same ligand molecules
is reduced. Here we show, by extending simple ligand-receptor models to
out-of-equilibrium thermodynamics, that internalization increases the accuracy
with which cells can measure ligand concentrations in the external environment.
Comparison with experimental rates of real receptors demonstrates that our
model has indeed biological significance.Comment: 9 pages, 4 figures, accepted for publication in Physical Review
Diffraction in low-energy electron scattering from DNA: bridging gas phase and solid state theory
Using high-quality gas phase electron scattering calculations and multiple
scattering theory, we attempt to gain insights on the radiation damage to DNA
induced by secondary low-energy electrons in the condensed phase, and to bridge
the existing gap with the gas phase theory and experiments. The origin of
different resonant features (arising from single molecules or diffraction) is
discussed and the calculations are compared to existing experiments in thin
films.Comment: 40 pages preprint, 12 figures, submitted to J. Chem. Phy
Optimal transport on wireless networks
We present a study of the application of a variant of a recently introduced
heuristic algorithm for the optimization of transport routes on complex
networks to the problem of finding the optimal routes of communication between
nodes on wireless networks. Our algorithm iteratively balances network traffic
by minimizing the maximum node betweenness on the network. The variant we
consider specifically accounts for the broadcast restrictions imposed by
wireless communication by using a different betweenness measure. We compare the
performance of our algorithm to two other known algorithms and find that our
algorithm achieves the highest transport capacity both for minimum node degree
geometric networks, which are directed geometric networks that model wireless
communication networks, and for configuration model networks that are
uncorrelated scale-free networks.Comment: 5 pages, 4 figure
Electronic structure of superconducting graphite intercalate compounds: The role of the interlayer state
Although not an intrinsic superconductor, it has been long--known that, when
intercalated with certain dopants, graphite is capable of exhibiting
superconductivity. Of the family of graphite--based materials which are known
to superconduct, perhaps the most well--studied are the alkali metal--graphite
intercalation compounds (GIC) and, of these, the most easily fabricated is the
CK system which exhibits a transition temperature K. By increasing the alkali metal concentration (through high pressure
fabrication techniques), the transition temperature has been shown to increase
to as much as K in CNa. Lately, in an important recent
development, Weller \emph{et al.} have shown that, at ambient conditions, the
intercalated compounds \cyb and \cca exhibit superconductivity with transition
temperatures K and K respectively, in excess
of that presently reported for other graphite--based compounds. We explore the
architecture of the states near the Fermi level and identify characteristics of
the electronic band structure generic to GICs. As expected, we find that charge
transfer from the intercalant atoms to the graphene sheets results in the
occupation of the --bands. Yet, remarkably, in all those -- and only
those -- compounds that superconduct, we find that an interlayer state, which
is well separated from the carbon sheets, also becomes occupied. We show that
the energy of the interlayer band is controlled by a combination of its
occupancy and the separation between the carbon layers.Comment: 4 Figures. Please see accompanying experimental manuscript
"Superconductivity in the Intercalated Graphite Compounds C6Yb and C6Ca" by
Weller et a
First principles study of the origin and nature of ferromagnetism in (Ga,Mn)As
The properties of diluted GaMnAs are calculated for a wide range
of Mn concentrations within the local spin density approximation of density
functional theory. M\"ulliken population analyses and orbital-resolved
densities of states show that the configuration of Mn in GaAs is compatible
with either 3d or 3d, however the occupation is not integer due to the
large - hybridization between the Mn states and the valence band of
GaAs. The spin splitting of the conduction band of GaAs has a mean field-like
linear variation with the Mn concentration and indicates ferromagnetic coupling
with the Mn ions. In contrast the valence band is antiferromagnetically coupled
with the Mn impurities and the spin splitting is not linearly dependent on the
Mn concentration. This suggests that the mean field approximation breaks down
in the case of Mn-doped GaAs and corrections due to multiple scattering must be
considered. We calculate these corrections within a simple free electron model
and find good agreement with our {\it ab initio} results if a large exchange
constant (eV) is assumed.Comment: 15 pages, 14 figure
- …