60 research outputs found
A spectroscopic, thermodynamic and molecular docking study of the binding mechanism of dapoxetine with calf thymus DNA
Dapoxetine is a selective serotonin reuptake inhibitor, used to treat premature ejaculation in men. Dapoxetine may interact with theDNAand hence this study investigated dapoxetine and calf thymusDNA(ctDNA) binding interaction. The interaction study of ligands to DNA is of importance in the development of molecular probes and therapeutic agents. Spectroscopic techniques including spectrofluorometry and spectrophotometry were employed to study this interaction. Fluorescence studies indicated a static quenching mechanism between dapoxetine and ctDNA. Groove binding was suggested as the mode of interaction between dapoxetine and ctDNA based onUVabsorption, circular dichroism (CD) spectroscopy, iodide quenching and molecular docking studies. The studies conducted at three different temperatures 298, 303 and 310 K indicated a strong binding interaction at higher temperatures. Thermodynamic studies conducted indicated involvement of hydrophobic interaction between ctDNA and dapoxetine and were entropy-driven. Ethidium bromide probe study suggested that dapoxetine does not bind to ctDNA in an intercalative fashion. Iodide quenching studies further proved the non-intercalative binding of ctDNA with dapoxetine. Ionic strength studies conducted ruled out the electrostatic binding mechanism between ctDNA and dapoxetine. Molecular docking analysis performed for the dapoxetine with calf thymus DNA (ctDNA) interaction and confirmed minor groove binding of dapoxetine to ctDNA. The study helped to reveal the binding interaction mechanism between dapoxetine and ctDNA
In vivo study of anti-diabetic activity of Eremurus himalaicus
Diabetes mellitus is a most common endocrine disorder, affecting more than 300
million people worldwide. For this, therapies developed along the principles of western
medicine (allopathic) are often limited in efficacy, carry the risk of adverse effects, and
are often too costly, especially for the developing world. In order to identify
complementary or alternative approaches to existing medications, we studied the antidiabetic
potential of Eremurus himalaicus-An endemic plant of North-Western
Himalayas. The acute oral toxicity studies of the extracts revealed no toxic effects up to
the levels of 2000 mg/kg b. wt. The Ethyl Acetate, Methanol and Aqueous extracts of
Eremurus himalaicus were screened for the presence of hypoglycaemic and antidiabetic
activity. In this study diabetes was induced by a single IP dose Alloxan monohydrate.
The study was carried out on a 14 day protocol and the blood glucose, SGOT, SGPT and
ALP levels were measured on Day 0, Day 7 and Day 14 of the treatment, along with
histopathological examination of pancreas on day 14. Maximum activity was shown by
the ethyl acetate extract with a percent variation in blood glucose level of 30.78% and
48.78% followed by aqueous extract with a percent variation in blood glucose level of
25.43% and 38.77% at a dose level of 250 mg/kg b. wt. and 500 mg/kg b. wt.
respectively. Glibenclamide was taken as the standard and the results were quite
comparable with it. The histopathological studies also indicated that Eremurus
himalaicus is effective in regeneration of insulin secreting β-cells and thus possesses antihyperglycaemic
activity. The results also showed that Eremurus himalaicus protects
significantly from other physiological aberrations i.e., polydypsia, polyphagia, weight
loss and metabolic aberrations i.e., increase in SGOT, SGPT, ALP, cholesterol and
triglyceride levels caused by diabetes, in a dose dependent manner. The aqueous extract
also showed significant effect in increasing the oral glucose tolerance of rats and it also
showed good hypoglycaemic activity in normoglycaemic rats. The preliminary
phytochemical analysis of the extracts of Eremurus himalaicus revealed the presence of
alkaloids, tannins, saponins, terpenoids, flavonoids, phenolics and glycosides as the
possible biologically active principles
Theoretical study of the antioxidant mechanism and structure-activity relationships of 1,3,4-oxadiazol-2-ylthieno[2,3-d]pyrimidin-4-amine derivatives: a computational approach
A theoretical thermodynamic study was conducted to investigate the antioxidant activity and mechanism of 1,3,4-oxadiazol-2-ylthieno[2,3-d]pyrimidin-4-amine derivatives (OTP) using a Density Functional Theory (DFT) approach. The study assessed how solvent environments influence the antioxidant properties of these derivatives. With the increasing prevalence of diseases linked to oxidative stress, such as cancer and cardiovascular diseases, antioxidants are crucial in mitigating the damage caused by free radicals. Previous research has demonstrated the remarkable scavenging abilities of 1,3,4-oxadiazole derivatives, prompting this investigation into their potential using computational methods. DFT calculations were employed to analyze key parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE), to delineate the antioxidant mechanisms of these compounds. Our findings indicate that specific electron-donating groups such as amine on the phenyl rings significantly enhance the antioxidant activities of these derivatives. The study also integrates global and local reactivity descriptors, such as Fukui functions and HOMO-LUMO energies, to predict the stability and reactivity of these molecules, providing insights into their potential as effective synthetic antioxidants in pharmaceutical applications
A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches
Quetiapine (QTP) is a short-acting atypical antipsychotic drug that treats schizophrenia or manic episodes of bipolar disorder. Human serum albumin (HSA) is an essential transport protein that transports hormones and various other ligands to their intended site of action. The interactions of QTP with HSA and their binding mechanism in the HSA-QTP system was studied using spectroscopic and molecular docking techniques. The UV-Vis absorption study shows hyperchromicity in the spectra of HSA on the addition of QTP, suggesting the complex formation and interactions between QTP and HSA. The results of intrinsic fluorescence indicate that QTP quenched the fluorescence of HSA and confirmed the complex formation between HSA and QTP, and this quenching mechanism was a static one. Thermodynamic analysis of the HSA-QTP system confirms the involvement of hydrophobic forces, and this complex formation is spontaneous. The competitive displacement and molecular docking experiments demonstrated that QTP is preferentially bound to HSA subdomain IB. Furthermore, the CD experiment results showed conformational changes in the HSA-QTP system. Besides this, the addition of QTP does not affect the esterase-like activity of HSA. This study will help further understand the credible mechanism of transport and delivery of QTP via HSA and design new QTP-based derivatives with greater efficacy
New ultra-performance liquid chromatography-tandem mass spectrometry method for the determination of irbesartan in human plasma
With the objective of reducing analysis time and maintaining good efficiency, there has been substantial focus on high-speed chromatographic separations and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) is a preeminent analytical tool for rapid biomedical analysis. In this study a simple, rapid, sensitive, and specific ultra-performance liquid chromatography-MS/MS method was developed and validated for quantification of the angiotensin II receptor antagonist, irbesartan (IRB), in human plasma. After a simple protein precipitation using methanol and acetonitrile, IRB and internal standard (IS) telmisartan were separated on Acquity UPLC BEH C18 column (50 mm × 2.1 mm, i.d. 1.7 μm, Waters, Milford, MA, USA) using a mobile phase consisted of acetonitrile: methanol: 10 mM ammonium acetate (70: 15: 15 v/v/v) with a flow rate of 0.4 mL/min and detected MS/MS in negative ion mode. The ion transitions recorded in multiple reaction monitoring mode were m/z 427.2→193.08 for IRB and m/z 513.2→469.3 for IS. The assay exhibited a linear dynamic range of 2–500 ng/mL for IRB in human plasma with good correlation coefficient of (0.995) and with a lower limit of quantitation of 2 ng/mL. The intra- and interassay precisions were satisfactory; the relative standard deviations did not exceed 9.91%. The proposed UPLC-MS/MS method is simple, rapid, and highly sensitive, and hence it could be reliable for pharmacokinetic and toxicokinetic study in both animals and humans
Food Toxicity of Mycotoxin Citrinin and Molecular Mechanisms of Its Potential Toxicity Effects through the Implicated Targets Predicted by Computer-Aided Multidimensional Data Analysis
The mycotoxin citrinin, which can contaminate food, is a major global concern. Citrinin is regarded as an inevitable pollutant in foods and feed since fungi are widely present in the environment. To identify contentious toxicity and lessen its severity by understanding the targets of citrinin in the human body and the impacted biosynthetic pathways, we analyzed the production of citrinin from Aspergillus flavus and Penicillium notatum and used a thorough bioinformatics analysis to characterize the toxicity and predict genes and protein targets for it. The predicted median fatal dosage (LD50) for citrinin was 105 mg/kg weight, and it belonged to toxicity class 3 (toxic if swallowed). Citrinin was found to be well absorbed by human intestinal epithelium and was a Pgp nonsubstrate (permeability glycoprotein), which means that once it is absorbed, it cannot be pumped out, hence leading to bioconcentration or biomagnification in the human body. The main targets of toxicity were casp3, TNF, IL10, IL1B, BAG3, CCNB1, CCNE1, and CDC25A, and the biological pathways implicated were signal transduction involved in DNA damage checkpoints, cellular and chemical responses to oxidative stress, DNA damage response signal transduction by P53, stress-activated protein kinase signaling cascade, netrin–UNC5B signaling, PTEN gene regulation, and immune response. Citrinin was linked to neutrophilia, squamous cell carcinoma, Fanconi anemia, leukemia, hepatoblastoma, and fatty liver diseases. The transcription factors E2F1, HSF1, SIRT1, RELA, NFKB, JUN, and MYC were found to be responsible. When data mining was performed on citrinin targets, the top five functional descriptions were a cell’s response to an organic cyclic compound, the netrin–UNC5B signaling pathway, lipids and atherosclerosis, thyroid cancer, and controlling the transcription of the PTEN gene
Protective Role of Quercetin in Carbon Tetrachloride Induced Toxicity in Rat Brain: Biochemical, Spectrophotometric Assays and Computational Approach
Carbon tetrachloride (CCL4) induces oxidative stress by free radical toxicities, inflammation, and neurotoxicity. Quercetin (Q), on the other hand, has a role as anti-inflammatory, antioxidant, antibacterial, and free radical-scavenging. This study explored protection given by quercetin against CCL4 induced neurotoxicity in rats at given concentrations. Male Wistar rats were divided into four groups Group C: control group; Group CCL4: given a single oral dose of 1 mL/kg bw CCL4; Group Q: given a single i.p injection of 100 mg/kg bw quercetin; and Group Q + CCL4: given a single i.p injection of 100 mg/kg bw quercetin before two hours of a single oral dose of 1 mL/kg bw CCL4. The results from brain-to-body weight ratio, morphology, lipid peroxidation, brain urea, ascorbic acid, reduced glutathione, sodium, and enzyme alterations (aspartate aminotransferase (AST), alanine aminotransferase (ALT), catalase, and superoxide dismutase) suggested alterations by CCL4 and a significant reversal of these parameters by quercetin. In silico analysis of quercetin with various proteins was conducted to understand the molecular mechanism of its protection. The results identified by BzScore4 D showed moderate binding between quercetin and the following receptors: glucocorticoids, estrogen beta, and androgens and weak binding between quercetin and the following proteins: estrogen alpha, Peroxisome proliferator-activated receptors (PPARγ), Herg k+ channel, Liver x, mineralocorticoid, progesterone, Thyroid α, and Thyroid β. Three-dimensional/four-dimensional visualization of binding modes of quercetin with glucocorticoids, estrogen beta, and androgen receptors was performed. Based on the results, a possible mechanism is hypothesized for quercetin protection against CCL4 toxicity in the rat brain
An Insight into Wheat Germ Oil Nutrition, Identification of Its Bioactive Constituents and Computer-Aided Multidimensional Data Analysis of Its Potential Anti-Inflammatory Effect via Molecular Connections
Wheat germ oil (WGO) is the richest source of unexplored antioxidants and anti-inflammatory compounds. In this study, we identified the constituents of WGO by gas chromatography–mass spectrometry (GC-MS). The physicochemical and pharmacokinetic behaviors were evaluated for the top 12 constituents with the common target FABP4. Three fatty acids with significant anti-inflammatory activity were evaluated for their interaction with FABP4 by molecular docking. The molecular mechanisms involved in anti-inflammatory responses were analyzed by various in-silico analytical tools and multidimensional data analysis. WGO showed anti-inflammatory activities via FABP4 interacting physically with target genes (77.84%) and by co-expressing with 8.01% genes. Primary targets for inflammatory pathways were PPARα, PPARγ, LPL, LEP, and ADIPOQ, as depicted by gene network enrichment analysis. The key pathways implicated were the metabolism of lipids, PPAR signaling, cellular response to alcohol, oxygen and nitrogen pathway, inflammatory response pathway, and regulation of the inflammatory pathway. The common transcription factors implicated were HNF1, AP2α, CEBP, FOX, STATS, MYC, Zic, etc. In this study, we found that WGO possesses anti-inflammatory potential via FABP4 binding to PPARα, PPARγ, LPL, LEP, and ADIPOQ gene expression by regulatory transcription factors HNF, AP2α, and CEPB
High-Dose Aspirin Reverses Tartrazine-Induced Cell Growth Dysregulation Independent of p53 Signaling and Antioxidant Mechanisms in Rat Brain
Tartrazine, an azo dye used in food, cosmetics, and pharmaceuticals with the effects on cell cycle, is not well understood. Therefore, we investigated the toxicity of tartrazine in rat brain with high-dose aspirin. Male Wistar rats (n = 24) were divided into (C) control, (T) tartrazine (700 mg/kg body weight [BW] at weeks 1 and 2), (A) aspirin (150 mg/kg [BW] at weeks 1, 2, and 3), and (TA) aspirin + tartrazine (150 mg/kg [BW] aspirin at weeks 1, 2, and 3 and 700 mg/kg [BW] tartrazine at weeks 1 and 2) groups. The expression of p53, B cell lymphoma-2 extra-large (Bcl-xL), cyclin-dependent kinase 2 (CDK2), p27, and Ki67 was evaluated by quantitative reverse-transcription PCR. A histopathological analysis of brain tissue and oxidative stress level was assessed based on reduced glutathione (GSH), ascorbic acid (AA), and malondialdehyde levels. We found that Bcl-xL, Ki67, CDK2, and p27 were upregulated and p53 was downregulated in the tartrazine-treated group as compared to the control group. Aspirin administration reversed these changes except P53 expression. Tartrazine had no effect on lipid peroxidation but altered AA and GSH levels with no reversal by aspirin treatment. Histopathological analysis revealed that aspirin prevented tartrazine-induced damage including increased perivascular space and hemorrhage. These results indicate that aspirin protects the brain from tartrazine-induced toxicity independent of p53 signaling and antioxidant mechanisms
- …