1,486 research outputs found

    Dissecting the Workforce and Workplace for Clinical Endocrinology, and the Work of Endocrinologists Early in Their Careers

    Get PDF
    [Excerpt] No national mechanism is in place for an informed, penetrating, and systematic assessment of the physician workforce such as that achieved by the National Science Foundation (NSF) for the periodic evaluation of the nation’s scientists and engineers. Likewise, knowledge of the workforce for clinical research is enigmatic and fragmentary despite the serial recommendations of “blue-ribbon” panels to establish a protocol for the recurrent assessment of clinical investigators early in their careers. Failure to adopt a national system for producing timely, high-quality data on the professional activities of physicians limits the application of improvement tools for advancing clinical investigation and ultimately improving clinical practice. The present study was designed as a pilot project to test the feasibility of using Web-based surveys to estimate the administrative, clinical, didactic, and research work of subspecialty physicians employed in academic, clinical, federal, and pharmaceutical workplaces. Physician members of The Endocrine Society (TES) were used as surrogate prototypes of a subspecialty workforce because of their manageable number and investigative tradition. The results establish that Web-based surveys provide a tool to assess the activities of a decentralized workforce employed in disparate workplaces and underscore the value of focusing on physician work within the context of particular workplaces within a subspecialty. Our report also provides a new and timely snapshot of the amount and types of research performed by clinically trained endocrinologists and offers an evidenced-based framework for improving the investigative workforce in this medical subspecialty

    Optimization of the leak conductance in the squid giant axon

    Full text link
    We report on a theoretical study showing that the leak conductance density, \GL, in the squid giant axon appears to be optimal for the action potential firing frequency. More precisely, the standard assumption that the leak current is composed of chloride ions leads to the result that the experimental value for \GL is very close to the optimal value in the Hodgkin-Huxley model which minimizes the absolute refractory period of the action potential, thereby maximizing the maximum firing frequency under stimulation by sharp, brief input current spikes to one end of the axon. The measured value of \GL also appears to be close to optimal for the frequency of repetitive firing caused by a constant current input to one end of the axon, especially when temperature variations are taken into account. If, by contrast, the leak current is assumed to be composed of separate voltage-independent sodium and potassium currents, then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review

    A laser-driven target of high-density nuclear polarized hydrogen gas

    Full text link
    We report the best figure-of-merit achieved for an internal nuclear polarized hydrogen gas target and a Monte Carlo simulation of spin-exchange optical pumping. The dimensions of the apparatus were optimized using the simulation and the experimental results were in good agreement with the simulation. The best result achieved for this target was 50.5% polarization with 58.2% degree of dissociation of the sample beam exiting the storage cell at a hydrogen flow rate of 1.1×10181.1\times 10^{18} atoms/s.Comment: Accepted as a Rapid Communication article in Phys. Rev.

    Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil

    Get PDF
    Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were 'time-of-day-dependent' which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module 'hubs' orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations.EM201

    Spinors in Weyl Geometry

    Get PDF
    We consider the wave equation for spinors in D{\cal D}-dimensional Weyl geometry. By appropriately coupling the Weyl vector Ï•ÎŒ\phi _{\mu} as well as the spin connection ωΌab\omega _{\mu a b } to the spinor field, conformal invariance can be maintained. The one loop effective action generated by the coupling of the spinor field to an external gravitational field is computed in two dimensions. It is found to be identical to the effective action for the case of a scalar field propagating in two dimensions.Comment: 13 pages, REVTEX, no figure
    • 

    corecore