45 research outputs found
A High Throughput Method for Measuring Polycyclic Aromatic Hydrocarbons in Seafood Using QuEChERS Extraction and SBSE
National Oceanic and Atmospheric Administration (NOAA) Method NMFS-NWFSC-59 2004 is currently used to quantitatively analyze seafood for polycyclic aromatic hydrocarbon (PAH) contamination, especially following events such as the Deepwater Horizon oil rig explosion that released millions of barrels of crude oil into the Gulf of Mexico. This method has limited throughput capacity; hence, alternative methods are necessary to meet analytical demands after such events. Stir bar sorptive extraction (SBSE) is an effective technique to extract trace PAHs in water and the quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction strategy effectively extracts PAHs from complex food matrices. This study uses SBSE to concentrate PAHs and eliminate matrix interference from QuEChERS extracts of seafood, specifically oysters, fish, and shrimp. This method provides acceptable recovery (65â138%) linear calibrations and is sensitive (LOD = 0.02âppb, LOQ = 0.06âppb) while providing higher throughput and maintaining equivalency between NOAA 2004 as determined by analysis of NIST SRM 1974b mussel tissue
A High Throughput Method for Measuring Polycyclic Aromatic Hydrocarbons in Seafood Using QuEChERS Extraction and SBSE
National Oceanic and Atmospheric Administration (NOAA) Method NMFS-NWFSC-59 2004 is currently used to quantitatively analyze seafood for polycyclic aromatic hydrocarbon (PAH) contamination, especially following events such as the Deepwater Horizon oil rig explosion that released millions of barrels of crude oil into the Gulf of Mexico. This method has limited throughput capacity; hence, alternative methods are necessary to meet analytical demands after such events. Stir bar sorptive extraction (SBSE) is an effective technique to extract trace PAHs in water and the quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction strategy effectively extracts PAHs from complex food matrices. This study uses SBSE to concentrate PAHs and eliminate matrix interference from QuEChERS extracts of seafood, specifically oysters, fish, and shrimp. This method provides acceptable recovery (65-138%) linear calibrations and is sensitive (LOD = 0.02 ppb, LOQ = 0.06 ppb) while providing higher throughput and maintaining equivalency between NOAA 2004 as determined by analysis of NIST SRM 1974b mussel tissue
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Circadian pattern of blood energy metabolites â Timing matters!
Our study shows blood NEFA and BHB have consistent daily patterns. Time relative to feeding should be considered when analyzing blood for energy metabolites, specifically NEFA and BHB, as concentrations vary significantly throughout the day. Additionally, blood sampling for ketosis diagnosis should be performed at a consistent time of day to more accurately capture the energy status of early lactation cows.The Manager is published by Progressive Dairyman, an award-winning magazine that provides compelling features, helpful articles, insightful news analysis, and entertaining commentary about the people, practices and topics related to a dairy lifestyle
Marijuana-based Drugs: Innovative Therapeutics or Designer Drugs of Abuse?
Marijuana has been used recreationally and medicinally for centuries. The principle psychoactive component, Î9-tetrahydrocannabinol (Î9-THC), activates CB1 cannabinoid receptors (CB1Rs). CB1R agonists and antagonists could potentially treat a wide variety of diseases; unfortunately, therapeutic doses produce unacceptable psychiatric effects. âK2â or âSpiceâ (K2/Spice), an emerging drug of abuse, exhibits psychotropic actions via CB1R activation. Because of structural dissimilarity to Î9-THC, these drugs are widely unregulated and touted as âlegalâ marijuana. This review summarizes current and future therapeutic uses of CB1R ligands and provides a historical perspective of the K2/Spice âphenomenonâ so the reader can decide if marijuana-based drugs will truly provide innovative therapeutics or instead perpetuate drug abuse
Why Plants Harbor Complex Endophytic Fungal Communities: Insights From Perennial Bunchgrass Stipagrostis sabulicola in the Namib Sand Sea
All perennial plants harbor diverse endophytic fungal communities, but why they tolerate these complex asymptomatic symbioses is unknown. Using a multi-pronged approach, we conclusively found that a dryland grass supports endophyte communities comprised predominantly of latent saprophytes that can enhance localized nutrient recycling after senescence. A perennial bunchgrass, Stipagrostis sabulicola, which persists along a gradient of extreme abiotic stress in the hyper-arid Namib Sand Sea, was the focal point of our study. Living tillers yielded 20 fungal endophyte taxa, 80% of which decomposed host litter during a 28-day laboratory decomposition assay. During a 6-month field experiment, tillers with endophytes decomposed twice as fast as sterilized tillers, consistent with the laboratory assay. Furthermore, profiling the community active during decomposition using next-generation sequencing revealed that 59â70% of the S. sabulicola endophyte community is comprised of latent saprophytes, and these dual-niche fungi still constitute a large proportion (58â62%) of the litter community more than a year after senescence. This study provides multiple lines of evidence that the fungal communities that initiate decomposition of standing litter develop in living plants, thus providing a plausible explanation for why plants harbor complex endophyte communities. Using frequent overnight non-rainfall moisture events (fog, dew, high humidity), these latent saprophytes can initiate decomposition of standing litter immediately after tiller senescence, thus maximizing the likelihood that plant-bound nutrients are recycled in situ and contribute to the nutrient island effect that is prevalent in drylands
Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea.
The hyper-arid western Namib Sand Sea (mean annual rainfall 0-17 mm) is a detritus-based ecosystem in which primary production is driven by large, but infrequent rainfall events. A diverse Namib detritivore community is sustained by minimal moisture inputs from rain and fog. The decomposition of plant material in the Namib Sand Sea (NSS) has long been assumed to be the province of these detritivores, with beetles and termites alone accounting for the majority of litter losses. We have found that a mesophilic Ascomycete community, which responds within minutes to moisture availability, is present on litter of the perennial Namib dune grass Stipagrostis sabulicola. Important fungal traits that allow survival and decomposition in this hyper-arid environment with intense desiccation, temperature and UV radiation stress are darkly-pigmented hyphae, a thermal range that includes the relatively low temperature experienced during fog and dew, and an ability to survive daily thermal and desiccation stress at temperatures as high as 50°C for five hours. While rainfall is very limited in this area, fog and high humidity provide regular periods (℠1 hour) of sufficient moisture that can wet substrates and hence allow fungal growth on average every 3 days. Furthermore, these fungi reduce the C/N ratio of the litter by a factor of two and thus detritivores, like the termite Psammotermes allocerus, favor fungal-infected litter parts. Our studies show that despite the hyper-aridity of the NSS, fungi are a key component of energy flow and biogeochemical cycling that should be accounted for in models addressing how the NSS ecosystem will respond to projected climate changes which may alter precipitation, dew and fog regimes