26 research outputs found

    Dynamic relocalization of hOGG1 during the cell cycle is disrupted in cells harbouring the hOGG1-Cys(326) polymorphic variant

    Get PDF
    Numerous lines of evidence support the role of oxidative stress in different types of cancer. A major DNA lesion, 8-oxo-7,8-dihydroguanine (8-oxoG), is formed by reactive oxygen species in the genome under physiological conditions. 8-OxoG is strongly mutagenic, generating G·C→T·A transversions, a frequent somatic mutation in cancers. hOGG1 was cloned as a gene encoding a DNA glycosylase that specifically recognizes and removes 8-oxoG from 8-oxoG:C base pairs and suppresses G·C→T·A transversions. In this study, we investigated the subcellular localization and expression of hOGG1 during the cell cycle. Northern blots showed cell-cycle-dependent mRNA expression of the two major hOGG1 isoforms. By using a cell line constitutively expressing hOGG1 fused to enhanced green fluorescence protein (EGFP), we observed a dynamic relocalization of EGFP-hOGG1 to the nucleoli during the S-phase of the cell cycle, and this localization was shown to be linked to transcription. A C/G change that results in an amino acid substitution from serine to cysteine in codon 326 has been reported as a genetic polymorphism and a risk allele for a variety of cancers. We investigated the cellular localization of the corresponding protein, hOGG1-Cys(326), fused to EGFP and observed a dramatic effect on its localization that is explained by a change in the phosphorylation status of hOGG1

    Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming

    Get PDF
    Several methods exist for predicting non-coding RNA (ncRNA) genes in Escherichia coli (E.coli). In addition to about sixty known ncRNA genes excluding tRNAs and rRNAs, various methods have predicted more than thousand ncRNA genes, but only 95 of these candidates were confirmed by more than one study. Here, we introduce a new method that uses automatic discovery of sequence patterns to predict ncRNA genes. The method predicts 135 novel candidates. In addition, the method predicts 152 genes that overlap with predictions in the literature. We test sixteen predictions experimentally, and show that twelve of these are actual ncRNA transcripts. Six of the twelve verified candidates were novel predictions. The relatively high confirmation rate indicates that many of the untested novel predictions are also ncRNAs, and we therefore speculate that E.coli contains more ncRNA genes than previously estimated

    Nucleotide sequence of the tag gene from Escherichia coli

    No full text

    Human OGG1 undergoes serine phosphorylation and associates with the nuclear matrix and mitotic chromatin in vivo

    No full text
    OGG1 is the major DNA glycosylase in human cells for removal of 7,8 dihydro-8-oxoguanine (8-oxoG), one of the most frequent endogenous base lesions formed in the DNA of aerobic organisms. During replication, 8-oxoG will frequently mispair with adenine, thus forming G:C → T:A transversions, a common somatic mutation associated with human cancers. In the present study, we have constructed a stable transfectant cell line expressing hOGG1 fused at the C-terminal end to green fluorescent protein (GFP) and investigated the cellular distribution of the fusion protein by fluorescence analysis. It is shown that hOGG1 is preferentially associated with chromatin and the nuclear matrix during interphase and becomes associated with the condensed chromatin during mitosis. Chromatin-bound hOGG1 was found to be phosphorylated on a serine residue in vivo as revealed by staining with an anti-phosphoserine-specific antibody. Chromatin-associated hOGG1 was co-precipitated with an antibody against protein kinase C (PKC), suggesting that PKC is responsible for the phosphorylation event. Both purified and nuclear matrix-associated hOGG1 were shown to be substrates for PKC-mediated phosphorylation in vitro. This appears to be the first demonstration of a post-translational modification of hOGG1 in vivo

    A general role of the DNA glycosylase Nth1 in the abasic sites cleavage step of base excision repair in Schizosaccharomyces pombe

    No full text
    One of the most frequent lesions formed in cellular DNA are abasic (apurinic/apyrimidinic, AP) sites that are both cytotoxic and mutagenic, and must be removed efficiently to maintain genetic stability. It is generally believed that the repair of AP sites is initiated by the AP endonucleases; however, an alternative pathway seems to prevail in Schizosaccharomyces pombe. A mutant lacking the DNA glycosylase/AP lyase Nth1 is very sensitive to the alkylating agent methyl methanesulfonate (MMS), suggesting a role for Nth1 in base excision repair (BER) of alkylation damage. Here, we have further evaluated the role of Nth1 and the second putative S.pombe AP endonuclease Apn2, in abasic site repair. The deletion of the apn2 open reading frame dramatically increased the sensitivity of the yeast cells to MMS, also demonstrating that the Apn2 has an important function in the BER pathway. The deletion of nth1 in the apn2 mutant strain partially relieves the MMS sensitivity of the apn2 single mutant, indicating that the Apn2 and Nth1 act in the same pathway for the repair of abasic sites. Analysis of the AP site cleavage in whole cell extracts of wild-type and mutant strains showed that the AP lyase activity of Nth1 represents the major AP site incision activity in vitro. Assays with DNA substrates containing base lesions removed by monofunctional DNA glycosylases Udg and MutY showed that Nth1 will also cleave the abasic sites formed by these enzymes and thus act downstream of these enzymes in the BER pathway. We suggest that the main function of Apn2 in BER is to remove the resulting 3′-blocking termini following AP lyase cleavage by Nth1

    Proliferation Failure and Gamma Radiation Sensitivity of Fen1 Null Mutant Mice at the Blastocyst Stage

    No full text
    Flap endonuclease 1 (FEN1) has been shown to remove 5′ overhanging flap intermediates during base excision repair and to process the 5′ ends of Okazaki fragments during lagging-strand DNA replication in vitro. To assess the in vivo role of the mammalian enzyme in repair and replication, we used a gene-targeting approach to generate mice lacking a functional Fen1 gene. Heterozygote animals appear normal, whereas complete depletion of FEN1 causes early embryonic lethality. Fen1(−/−) blastocysts fail to form inner cell mass during cellular outgrowth, and a complete inactivation of DNA synthesis in giant cells of blastocyst outgrowth was observed. Exposure of Fen1(−/−) blastocysts to gamma radiation caused extensive apoptosis, implying an essential role for FEN1 in the repair of radiation-induced DNA damage in vivo. Our data thus provide in vivo evidence for an essential function of FEN1 in DNA repair, as well as in DNA replication

    Comparative analysis of 8-oxoG:C, 8-oxoG:A, A:C and C:C DNA repair in extracts from wild type or 8-oxoG DNA glycosylase deficient mammalian and bacterial cells

    No full text
    We have investigated repair of DNA containing 8-oxoguanine and certain mismatches in cell-free extracts from mouse embryonic fibroblasts (MEFs) using a plasmid substrate with a single lesion at a defined position. Repair synthesis was monitored in a small restriction fragment with different size single strands in order to follow the fate of repair reactions in both strands at the same time. An important part of the study was to assess the role of OGG1 in various repair reactions and the experiments were carried out with extracts from mouse embryonic fibroblasts diploid for a mogg1 deletion (Ogg1(-/-)) as well as wild type. In wild type, DNA containing 8-oxoG:C was repaired in the expected fashion predominantly through short-patch repair. Overall repair was reduced to 20% in the Ogg1(-/-) extracts and to 40% if only long-patch repair was considered. The 8-oxoG:A pair was processed similarly in wild type and Ogg1(-/-) extracts and repair synthesis at A as well as at 8-oxoG could be demonstrated, however, to the same extent in Ogg1(-/-) and wild type for both strands. Extracts from Ogg1(-/-) behaved normally in the correction of A:C and C:C mismatches, with a strong bias for correction of A for A:C and no significant strand discrimination for C:C. Similar experiments with extracts from Escherichia coli showed a 50% reduction in the repair of 8-oxoG:C in fpg extracts and an increase to 50% above wild type in mutY. These results show that the mouse OGG1 is the major enzyme for 8-oxoG repair in the MEF cells and does not participate in mismatch repair of A:C or C:C. Furthermore, 8-oxoG opposite A appears to be repaired by a two-step repair pathway with sequential removal of A and 8-oxoG mediated by enzymes different from OGG1

    Substrate specificities of bacterial and human AlkB proteins

    No full text
    Methylating agents introduce cytotoxic 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) residues into nucleic acids, and it was recently demonstrated that the Escherichia coli AlkB protein and two human homologues, hABH2 and hABH3, can remove these lesions from DNA by oxidative demethylation. Moreover, AlkB and hABH3 were also found to remove 1-meA and 3-meC from RNA, suggesting that cellular RNA repair can occur. We have here studied the preference of AlkB, hABH2 and hABH3 for single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA), and show that AlkB and hABH3 prefer ssDNA, while hABH2 prefers dsDNA. This was consistently observed with three different oligonucleotide substrates, implying that the specificity for single-stranded versus double-stranded DNA is sequence independent. The dsDNA preference of hABH2 was observed only in the presence of magnesium. The activity of the enzymes on single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and DNA/RNA hybrids was also investigated, and the results generally confirm the notion that while AlkB and hABH3 tend to prefer single-stranded nucleic acids, hABH2 is more active on double-stranded substrates. These results may contribute to identifying the main substrates of bacterial and human AlkB proteins in vivo
    corecore