85 research outputs found

    Beyond Geo-localization: Fine-grained Orientation of Street-view Images by Cross-view Matching with Satellite Imagery

    Full text link
    Street-view imagery provides us with novel experiences to explore different places remotely. Carefully calibrated street-view images (e.g. Google Street View) can be used for different downstream tasks, e.g. navigation, map features extraction. As personal high-quality cameras have become much more affordable and portable, an enormous amount of crowdsourced street-view images are uploaded to the internet, but commonly with missing or noisy sensor information. To prepare this hidden treasure for "ready-to-use" status, determining missing location information and camera orientation angles are two equally important tasks. Recent methods have achieved high performance on geo-localization of street-view images by cross-view matching with a pool of geo-referenced satellite imagery. However, most of the existing works focus more on geo-localization than estimating the image orientation. In this work, we re-state the importance of finding fine-grained orientation for street-view images, formally define the problem and provide a set of evaluation metrics to assess the quality of the orientation estimation. We propose two methods to improve the granularity of the orientation estimation, achieving 82.4% and 72.3% accuracy for images with estimated angle errors below 2 degrees for CVUSA and CVACT datasets, corresponding to 34.9% and 28.2% absolute improvement compared to previous works. Integrating fine-grained orientation estimation in training also improves the performance on geo-localization, giving top 1 recall 95.5%/85.5% and 86.8%/80.4% for orientation known/unknown tests on the two datasets.Comment: This paper has been accepted by ACM Multimedia 2022. The version contains additional supplementary material

    Generic two-phase coexistence in nonequilibrium systems

    Full text link
    Gibbs' phase rule states that two-phase coexistence of a single-component system, characterized by an n-dimensional parameter-space, may occur in an n-1-dimensional region. For example, the two equilibrium phases of the Ising model coexist on a line in the temperature-magnetic-field phase diagram. Nonequilibrium systems may violate this rule and several models, where phase coexistence occurs over a finite (n-dimensional) region of the parameter space, have been reported. The first example of this behaviour was found in Toom's model [Toom,Geoff,GG], that exhibits generic bistability, i.e. two-phase coexistence over a finite region of its two-dimensional parameter space (see Section 1). In addition to its interest as a genuine nonequilibrium property, generic multistability, defined as a generalization of bistability, is both of practical and theoretical relevance. In particular, it has been used recently to argue that some complex structures appearing in nature could be truly stable rather than metastable (with important applications in theoretical biology), and as the theoretical basis for an error-correction method in computer science (see [GG,Gacs] for an illuminating and pedagogical discussion of these ideas).Comment: 7 pages, 6 figures, to appear in Eur. Phys. J. B, svjour.cls and svepj.clo neede

    Enhanced absorption Hanle effect on the Fg=F->Fe=F+1 closed transitions

    Get PDF
    We analyse the Hanle effect on a closed FgFe=Fg+1F_g\to F_e=F_g+1 transition. Two configurations are examined, for linear- and circular-polarized laser radiation, with the applied magnetic field collinear to the laser light wavevector. We describe the peculiarities of the Hanle signal for linearly-polarized laser excitation, characterized by narrow bright resonances at low laser intensities. The mechanism behind this effect is identified, and numerical solutions for the optical Bloch equations are presented for different transitions.Comment: to be published in J. Opt. B, special issue on Quantum Coherence and Entanglement (February 2001

    Interacting Electrons on a Fluctuating String

    Full text link
    We consider the problem of interacting electrons constrained to move on a fluctuating one-dimensional string. An effective low-energy theory for the electrons is derived by integrating out the string degrees of freedom to lowest order in the inverse of the string tension and mass density, which are assumed to be large. We obtain expressions for the tunneling density of states, the spectral function and the optical conductivity of the system. Possible connections with the phenomenology of the cuprate high temperature superconductors are discussed.Comment: 14 pages, 1 figur

    Policy Interventions via Contract Interpretation

    No full text
    corecore