14 research outputs found

    Cholangiocyte organoids can repair bile ducts after transplantation in the human liver.

    Get PDF
    Organoid technology holds great promise for regenerative medicine but has not yet been applied to humans. We address this challenge using cholangiocyte organoids in the context of cholangiopathies, which represent a key reason for liver transplantation. Using single-cell RNA sequencing, we show that primary human cholangiocytes display transcriptional diversity that is lost in organoid culture. However, cholangiocyte organoids remain plastic and resume their in vivo signatures when transplanted back in the biliary tree. We then utilize a model of cell engraftment in human livers undergoing ex vivo normothermic perfusion to demonstrate that this property allows extrahepatic organoids to repair human intrahepatic ducts after transplantation. Our results provide proof of principle that cholangiocyte organoids can be used to repair human biliary epithelium

    Making Democratic-Governance Work: The Consequences for Prosperity

    Full text link

    Thymic Stromal Lymphopoietin Contributes to Myeloid Hyperplasia and Increased Immunoglobulins, But Not Epidermal Hyperplasia, in RabGEF1-Deficient Mice

    No full text
    Mice overexpressing the proallergic cytokine thymic stromal lymphopoietin (TSLP) in the skin develop a pathology resembling atopic dermatitis. RabGEF1, a guanine nucleotide exchange factor for Rab5 GTPase, is a negative regulator of IgE-dependent mast cell activation, and Rabgef1−/− and TSLP transgenic mice share many similar phenotypic characteristics, including elevated serum IgE levels and severe skin inflammation, with infiltrates of both lymphocytes and eosinophils. We report here that Rabgef1−/− mice also develop splenomegaly, lymphadenopathy, myeloid hyperplasia, and high levels of TSLP. Rabgef1−/−TSLPR−/− mice, which lack TSLP/TSLP receptor (TSLPR) signaling, had levels of blood neutrophils, spleen myeloid cells, and serum IL-4, IgG1, and IgE levels that were significantly reduced compared with those in Rabgef1−/−TSLPR+/+ mice. However, Rabgef1−/−TSLPR−/− mice, like Rag1- or eosinophil-deficient Rabgef1−/− mice, developed cutaneous inflammation and epidermal hyperplasia. Therefore, in Rabgef1−/− mice, TSLP/TSLPR interactions are not required for the development of epidermal hyperplasia but contribute to the striking myeloid hyperplasia and overproduction of immunoglobulins observed in these animals. Our study shows that RabGEF1 can negatively regulate TSLP production in vivo and that excessive production of TSLP contributes to many of the phenotypic abnormalities in Rabgef1−/− mice. However, the marked epidermal hyperplasia, cutaneous inflammation, and increased numbers of dermal mast cells associated with RabGEF1 deficiency can develop via a TSLPR-independent pathway, as well as in the absence of Rag1 or eosinophils
    corecore