44 research outputs found

    Demonstration of electron focusing using electronic lenses in low-dimensional system.

    Get PDF
    We report an all-electric integrable electron focusing lens in n-type GaAs. It is shown that a pronounced focusing peak takes place when the focal point aligns with an on-chip detector. The intensity and full width half maximum (FWHM) of the focusing peak are associated with the collimation of injected electrons. To demonstrate the reported focusing lens can be a useful tool, we investigate the characteristic of an asymmetrically gate biased quantum point contact with the assistance of a focusing lens. A correlation between the occurrence of conductance anomaly in low conductance regime and increase in FWHM of focusing peak is observed. The correlation is likely due to the electron-electron interaction. The reported electron focusing lens is essential for a more advanced electron optics device

    Interference effects in a tunable quantum point contact integrated with an electronic cavity

    Get PDF
    We show experimentally how quantum interference can be produced using an integrated quantum system comprising an arch-shaped short quantum wire (or quantum point contact, QPC) of 1D electrons and a reflector forming an electronic cavity. On tuning the coupling between the QPC and the electronic cavity, fine oscillations are observed when the arch QPC is operated in the quasi-1D regime. These oscillations correspond to interference between the 1D states and a state which is similar to the Fabry-Perot state and suppressed by a small transverse magnetic field of ±60  mT. Tuning the reflector, we find a peak in resistance which follows the behavior expected for a Fano resonance. We suggest that this is an interesting example of a Fano resonance in an open system which corresponds to interference at or near the Ohmic contacts due to a directly propagating, reflected discrete path and the continuum states of the cavity corresponding to multiple scattering. Remarkably, the Fano factor shows an oscillatory behavior taking peaks for each fine oscillation, thus, confirming coupling between the discrete and continuum states. The results indicate that such a simple quantum device can be used as building blocks to create more complex integrated quantum circuits for possible applications ranging from quantum-information processing to realizing the fundamentals of complex quantum systems

    Fano resonance in a cavity-reflector hybrid system.

    Get PDF
    © 2017 authors. Published by the American Physical Society.We present the results of transport measurements in a hybrid system consisting of an arch-shaped quantum point contact (QPC) and a reflector; together, they form an electronic cavity in between them. On tuning the arch-QPC and the reflector, an asymmetric resonance peak in resistance is observed at the one-dimension to two-dimension transition. Moreover, a dip in resistance near the pinch-off of the QPC is found to be strongly dependent on the reflector voltage. These two structures fit very well with the Fano line shape. The Fano resonance was found to get weakened on applying a transverse magnetic field, and smeared out at 100 mT. In addition, the Fano-like shape exhibited a strong temperature dependence and gradually smeared out when the temperature was increased from 1.5 to 20 K. The results might be useful in realizing devices for quantum information processing

    Engineering the spin polarization of one-dimensional electrons

    Get PDF
    We present results of magneto-focusing on the controlled monitoring of spin polarization within a one-dimensional (1D) channel, and its subsequent effect on modulating the spin-orbit interaction (SOI) in a 2D GaAs electron gas. We demonstrate that electrons within a 1D channel can be partially spin polarized as the effective length of the 1D channel is varied in agreement with the theoretical prediction. Such polarized 1D electrons when injected into a 2D region result in a split in the odd-focusing peaks, whereas the even peaks remain unaffected (single peak). On the other hand, the unpolarized electrons, achieved by reducing the effective length of the 1D channel, do not affect the focusing spectrum and the odd and even peaks remain as single peaks, respectively. The split in odd-focusing peaks is evidence of direct measurement of spin polarization within a 1D channel, where each sub-peak represents the population of a particular spin state. Confirmation of the spin splitting is determined by a selective modulation of the focusing peaks due to the Zeeman energy in the presence of an in-plane magnetic field. We suggest that the SOI in the 2D regime is enhanced by a stream of polarized 1D electrons. The spatial control of spin states of injected 1D electrons and the possibility of tuning the SOI may open up a new regime of spin-engineering with application in future quantum information schemes

    Direct observation of exchange-driven spin interactions in one-dimensional system

    Get PDF
    We present experimental results of transverse electron focusing measurements performed on an ntype GaAs based mesoscopic device consisting of one-dimensional (1D) quantum wires as injector and detector. We show that non-adiabatic injection of 1D electrons at a conductance of e2/ h results in a single first focusing peak, which transforms into two asymmetric sub-peaks with a gradual increase in the injector conductance up to 2e2/ h , each sub-peak representing the population of spinstate arising from the spatially separated spins in the injector. Further increasing the conductance flips the spin-states in the 1D channel, thus reversing the asymmetry in the sub-peaks. On applying a source-drain bias, the spin-gap, so obtained, can be resolved, thus providing evidence of exchange interaction induced spin polarization in the 1D systems. V

    Time-of-Flight Measurements of Single-Electron Wave Packets in Quantum Hall Edge States.

    Get PDF
    We report time-of-flight measurements on electrons traveling in quantum Hall edge states. Hot-electron wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The electron arrival time is detected by driving a detector barrier with a square wave that acts as a shutter. By adding an extra path using a deflection barrier, we measure a delay in the arrival time, from which the edge-state velocity v is deduced. We find that v follows 1/B dependence, in good agreement with the E[over →]×B[over →] drift. The edge potential is estimated from the energy dependence of v using a harmonic approximation.UK Department for Business, Innovation and SkillsThis is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevLett.116.12680

    Thermoelectric property of a one dimensional channel in the presence of a transverse magnetic field

    Get PDF
    We studied the thermal conduction through a quantum point contact (QPC), defined in a GaAs-AlxGa1x As heterostructure, in the presence of a transverse magnetic field. A shift in the position of a thermo-voltage peak is observed with increasing field. The position of the thermo-voltage peak follows the Cutler-Mott relation in the small field regime (B 3.0 T). Our results suggest that additional calibration is necessary when using QPC as thermometry, especially when the transverse magnetic field is applied

    LO-Phonon Emission Rate of Hot Electrons from an On-Demand Single-Electron Source in a GaAs/AlGaAs Heterostructure.

    Get PDF
    Using a recent time-of-flight measurement technique with 1 ps time resolution and electron-energy spectroscopy, we develop a method to measure the longitudinal-optical-phonon emission rate of hot electrons traveling along a depleted edge of a quantum Hall bar. Comparison to a single-particle model implies the scattering mechanism involves a two-step process via an intra-Landau-level transition. We show that this can be suppressed by control of the edge potential profile, and a scattering length >1  mm can be achieved, allowing the use of this system for scalable single-electron device applications

    Incipient singlet-triplet states in a hybrid mesoscopic system

    Get PDF
    In the present Rapid Communication, we provide an easily accessible way to achieve the singlet-triplet Kondo effect in a hybrid system consisting of a quantum point contact (QPC) coupled to an electronic cavity. We show that by activating the coupling between the QPC and cavity, a zero-bias anomaly occurs in a low conductance regime, a coexistence of a zero-bias and finite-bias anomaly (FBA) in a medium conductance regime, and a FBA-only anomaly in a high conductance regime. The latter two observations are due to the singlet-triplet Kondo effect
    corecore