39 research outputs found

    Single-shot pop-out 3D metrology of thin specimens with TEM

    Full text link
    Three-dimensional (3D) imaging of thin, extended specimens at nanometer resolution is critical for applications in biology, materials science, advanced synthesis, and manufacturing. Many 3D imaging techniques are limited to surface features, or available only for selective cross-sections, or require a tilt series of a local region, hence making them unsuitable for rapid, non-sacrificial screening of extended objects, or investigating fast dynamics. Here we describe a coherent imaging technique that recovers the 3D volume of a thin specimen with only a single, non-tomographic, energy-filtered, bright-field transmission electron microscopy (TEM) image. This technique does not require physically fracturing or sectioning thin specimens, only needs a single brief exposures to electron doses of ~100 e {\AA}-2, and can be readily calibrated for many existing TEMs; thus it can be widely deployed for rapid 3D metrology that complements existing forms of metrology.Comment: 33 pages, 14 figure

    ReCoDe: A Data Reduction and Compression Description for High Throughput Time-Resolved Electron Microscopy

    Full text link
    Fast, direct electron detectors have significantly improved the spatio-temporal resolution of electron microscopy movies. Preserving both spatial and temporal resolution in extended observations, however, requires storing prohibitively large amounts of data. Here, we describe an efficient and flexible data reduction and compression scheme (ReCoDe) that retains both spatial and temporal resolution by preserving individual electron events. Running ReCoDe on a workstation we demonstrate on-the-fly reduction and compression of raw data streaming off a detector at 3 GB/s, for hours of uninterrupted data collection. The output was 100-fold smaller than the raw data and saved directly onto network-attached storage drives over a 10 GbE connection. We discuss calibration techniques that support electron detection and counting (e.g. estimate electron backscattering rates, false positive rates, and data compressibility), and novel data analysis methods enabled by ReCoDe (e.g. recalibration of data post acquisition, and accurate estimation of coincidence loss).Comment: 53 pages, 20 figure

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Single-shot, coherent, pop-out 3D metrology

    No full text
    Abstract Three-dimensional (3D) imaging of thin, extended specimens at nanometer resolution is critical for applications in biology, materials science, advanced synthesis, and manufacturing. One route to 3D imaging is tomography, which requires a tilt series of a local region. However, capturing images at higher tilt angles is infeasible for such thin, extended specimens. Here, we explore a suitable alternative to reconstruct the 3D volume using a single, energy-filtered, bright-field coherent image. We show that when our specimen is homogeneous and amorphous, simultaneously inferring local depth and thickness for 3D imaging is possible in the near-field limit. We demonstrated this technique with a transmission electron microscope to fill a glaring gap for rapid, accessible 3D nanometrology. This technique is applicable, in general, to any coherent bright field imaging with electrons, photons, or any other wavelike particles
    corecore