13 research outputs found

    Critical Behavior of the Supersolid transition in Bose-Hubbard Models

    Full text link
    We study the phase transitions of interacting bosons at zero temperature between superfluid (SF) and supersolid (SS) states. The latter are characterized by simultaneous off-diagonal long-range order and broken translational symmetry. The critical phenomena is described by a long-wavelength effective action, derived on symmetry grounds and verified by explicit calculation. We consider two types of supersolid ordering: checkerboard (X) and collinear (C), which are the simplest cases arising in two dimensions on a square lattice. We find that the SF--CSS transition is in the three-dimensional XY universality class. The SF--XSS transition exhibits non-trivial new critical behavior, and appears, within a d=3−ϔd=3-\epsilon expansion to be driven generically first order by fluctuations. However, within a one--loop calculation directly in d=2d=2 a strong coupling fixed point with striking ``non-Bose liquid'' behavior is found. At special isolated multi-critical points of particle-hole symmetry, the system falls into the 3d Ising universality class.Comment: RevTeX, 24 pages, 16 figures. Also available at http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm

    Isometric Embedding of BPS Branes in Flat Spaces with Two Times

    Get PDF
    We show how non-near horizon p-brane theories can be obtained from two embedding constraints in a flat higher dimensional space with 2 time directions. In particular this includes the construction of D3 branes from a flat 12-dimensional action, and M2 and M5 branes from 13 dimensions. The worldvolume actions are determined by constant forms in the higher dimension, reduced to the usual expressions by Lagrange multipliers. The formulation affords insight in the global aspects of the spacetime geometries and makes contact with recent work on two-time physics.Comment: 29 pages, 10 figures, Latex using epsf.sty and here.sty; v2: reference added and some small correction

    Collisions with Black Holes and Deconfined Plasmas

    Full text link
    We use AdS/CFT to investigate i) high energy collisions with balls of deconfined plasma surrounded by a confining phase and ii) the rapid localized heating of a deconfined plasma. Both of these processes are dual to collisions with black holes, where they result in the nucleation of a new "arm" of the horizon reaching out in the direction of the incident object. We study the resulting non-equilibrium dynamics in a universal limit of the gravitational physics which may indicate universal behavior of deconfined plasmas at large N_c. Process (i) produces "virtual" arms of the plasma ball, while process (ii) can nucleate surprisingly large bubbles of a higher temperature phase.Comment: 25 pages, 9 figure

    RS1, Custodial Isospin and Precision Tests

    Full text link
    We study precision electroweak constraints within a RS1 model with gauge fields and fermions in the bulk. The electroweak gauge symmetry is enhanced to SU(2)_L \times SU(2)_R \times U(1)_{B-L}, thereby providing a custodial isospin symmetry sufficient to suppress excessive contributions to the T parameter. We then construct complete models, complying with all electroweak constraints, for solving the hierarchy problem, without supersymmetry or large hierarchies in the fundamental couplings. Using the AdS/CFT correspondence our models can be interpreted as dual to a strongly coupled conformal Higgs sector with global custodial symmetry, gauge and fermionic matter being fundamental fields external to the CFT. This scenario has interesting collider signals, distinct from other RS models in the literature.Comment: 32 pages, 6 figures, latex2e, minor changes, references adde

    On Smooth Time-Dependent Orbifolds and Null Singularities

    Get PDF
    We study string theory on a non-singular time-dependent orbifold of flat space, known as the `null-brane'. The orbifold group, which involves only space-like identifications, is obtained by a combined action of a null Lorentz transformation and a constant shift in an extra direction. In the limit where the shift goes to zero, the geometry of this orbifold reproduces an orbifold with a light-like singularity, which was recently studied by Liu, Moore and Seiberg (hep-th/0204168). We find that the backreaction on the geometry due to a test particle can be made arbitrarily small, and that there are scattering processes which can be studied in the approximation of a constant background. We quantize strings on this orbifold and calculate the torus partition function. We construct a basis of states on the smooth orbifold whose tree level string interactions are nonsingular. We discuss the existence of physical modes in the singular orbifold which resolve the singularity. We also describe another way of making the singular orbifold smooth which involves a sandwich pp-wave.Comment: 24 pages, one figur

    Cosmological Spacetimes from Negative Tension Brane Backgrounds

    Get PDF
    We identify a time-dependent class of metrics with potential applications to cosmology, which emerge from negative-tension branes. The cosmology is based on a general class of solutions to Einstein-dilaton-Maxwell theory, presented in {hep-th/0106120}. We argue that solutions with hyperbolic or planar symmetry describe the gravitational interactions of a pair of negative-tension qq-branes. These spacetimes are static near each brane, but become time-dependent and expanding at late epoch -- in some cases asymptotically approaching flat space. We interpret this expansion as being the spacetime's response to the branes' presence. The time-dependent regions provide explicit examples of cosmological spacetimes with past horizons and no past naked singularities. The past horizons can be interpreted as S-branes. We prove that the singularities in the static regions are repulsive to time-like geodesics, extract a cosmological `bounce' interpretation, compute the explicit charge and tension of the branes, analyse the classical stability of the solution (in particular of the horizons) and study particle production, deriving a general expression for Hawking's temperature as well as the associated entropy.Comment: 43 pages, 8 figures. Published versio
    corecore